
On Visualization and Comprehension of Scenario-Based Programs

Nir Eitan, Michal Gordon, David Harel, Assaf Marron
Dept. of Computer Science and Applied Mathematics

Weizmann Institute of Science, Israel
firstname.lastname@weizmann.ac.il

Gera Weiss
Dept. of Computer Science

Ben Gurion University, Israel
geraw@bgu.ac.il

Abstract—We address the problem of comprehending cause
and effect relationships between relatively independent be-
havior components of a single application. Our focus is on
the paradigm of behavioral, scenario-based, programming, as
captured by the language of live sequence charts (LSC) or its
Java-based counterpart, BPJ. In this programming paradigm,
multi-modal behaviors can be specified separately, and are
integrated only at run time. We present a tool, with which the
user can easily follow the decisions of the collective execution
mechanism. It shows the behaviors and events that were
executed at each point in time, and those that were delayed
or abandoned, as well as the causes and reasons behind these
run-time choices. The dynamic effects of such decisions on the
system’s behavior can be seen easily too.

Keywords-trace visualization; behavioral programming;
scenario-based programming; BPJ

I. INTRODUCTION

We propose a tool for visualizing traces of behav-
ioral programs in support of comprehension. The behav-
ioral programming approach (BP) was introduced via the
scenario-based programming language of live sequence
charts (LSC) [1]. Later, a java-based counterpart, BPJ,
was proposed too [2]. In the BP approach, behaviors are
programmed independently, or semi-independently, of each
other, and are interlaced at run-time, by a collective execu-
tion mechanism. This results in a cohesive, integrated system
behavior.

In this paper, we address the problem of analyzing
cause and effect issues in program traces. Specifically, we
propose browsing, filtering, and grouping mechanisms for
comprehending traces. Our main challenge is to enhance
understanding of executions by best illustrating the flow of
each behavior module as well as the indirect interaction
between behaviors, and to be able to use this understanding
to clarify the resulting sequence of actions and the reasons
certain actions are not executed at all.

Our target problem domain is that of behavioral programs,
but we believe that similar issues arise also in other program-
ming contexts. Specifically, we concentrate on behavioral
programs written with the Java package BPJ, available on
[3]. Each program consists of modules, called behavior
threads (or b-threads), that can request events, wait for
events and block (i.e., forbid) events. Collective execution
of b-threads uses an enhanced publish/subscribe protocol in

which: (a) all b-threads synchronize and place their “bids”,
specifying requested events and blocked events; (b) the first
event (subject to a given order) that is requested and is
not blocked is chosen; (c) b-threads waiting for the event
are notified; (d) the notified b-threads progress to their
next states, where they all synchronize again and can place
new bids. See [2] for more motivation, technical details,
examples, etc.

Despite the apparent naturalness of behavioral programs,
comprehending them may not be trivial. In the words of
Green [4]: “If a language highlights the conditions under
which actions are to be taken, as in a rule-based language,
then it probably obscures the sequential ordering of actions.
[...] part of the notation design problem is to make the
obscured information more visible”. In a way, it is exactly
this problem that we wish to address in the present paper;
namely, the fact that the very constructs of the BP approach
(and particularly its manifestation in BPJ) can easily obscure
the actual sequence of execution. The visualization tool we
propose here combines visualization of individual behav-
iors, information about bidding at synchronization points
(syncpoints), and the resulting event trace. Together with
navigation and filtering techniques, this trace visualization
enhances comprehension of behavioral programs, and can
help the user/programmer “see” not only why certain events
were chosen but also why others were not (e.g., due to
selection order or blocking).

II. VISUALIZING BPJ TRACES

The tool uses a table-like display to visualize the run of
a behavioral program. The display is interactive and uses
distinct notations according to accepted cognitive guide-
lines [5], [6]. B-threads are depicted in columns ordered by
priorities, and syncpoints are represented by rows ordered
by time that intersect the b-thread columns.

Each cell in the table represents a b-thread state at a
given syncpoint. The sets of events requested, waited-for,
and blocked by the b-thread are shown in sub-cells marked
R, W, and B (see Figure 1).

We define three cell types: the leader cell, of which there
is one per syncpoint, is the one that contains the event
request chosen at this syncpoint; active cells, for b-threads
that will advance because they wait for the chosen event, and

2011 19th IEEE International Conference on Program Comprehension

1063-6897/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPC.2011.10

189

Figure 1. Visualizing a game of Tic-Tac-Toe. Columns show b-threads grouped by class. Each row is associated with a syncpoint and shows the triggered
event. When a row is expanded (e.g., row 6) the events requested, waited-for and blocked by each b-thread are also shown.

non-active cells, for b-threads that do not advance. Each cell
type is identified by both its background and its borderline:
dark, medium or light background, and a thick, thin or
dashed borderline, respectively; see Figure 3.

The user can perform focused scrolling by pressing the
shift key: the table is scrolled down, but making sure that
the column with the current leader cell remains in view. To
follow a particular behavior thread, the user can scroll to
the next leader cell in a given column using the navigation
button adjacent to the column’s name.

A. Events and events sets

As shown in Figure 2, the initial column on each sync-
point row shows the selected event, thus forming an event-
trace. The copy of this event that appears in requested and
waited-for event sets in all active cells is emphasized by a
green star icon, clarifying why each b-thread advanced.

In behavioral programming, understanding why an event
was not chosen is just as important as understanding why
other events were. Accordingly, events that are blocked are
marked by red square icons. Coupled with the priority order
of the columns and the order of the events in the requested-
events sets, the tool helps understand why a non-starred
event instance was not selected.

BPJ supports both concrete event sets and rule-based sets;
e.g., “all events of a given class”. A button next to the set
name enables viewing all displayable events in the set. In
rule-base sets, which may be very large, only events that are
requested at the syncpoint are shown.

B. Scalability and filtering

Traces can be very large. This is due not only to the
number of events but also to the number of b-threads. A
large number of b-threads may result from the programmer’s
preference to create a b-thread instance for every variation
in behavior (perhaps using parameterized instances of the

same b-thread class). There may also be b-threads that are
dynamically created (and perhaps later deleted) at runtime.
Each of these b-threads occupies an entire column, of which
many cells may be empty.

One mechanism that reduces the number of columns in
the display is grouping b-thread instances by class into one
column. The sets of requested, wait-for and blocked events
shown in each cell are the union of the corresponding sets
over all instances.

Another feature reduces the number of columns by filter-
ing the b-threads to be displayed subject to the following
classification, based on their functionality in the trace:

• Non-active: b-threads that did not block or request
anything and did not advance either; they waited for
events that did not occur in the trace.

• Active-follower: b-threads that advanced when certain
events occurred, but did not block or request events.

• Active: b-threads that requested or blocked events, but
advanced only when event requests of other b-threads
were selected.

• Active-leader: b-threads that contributed to driving the
run. At least one of their event requests was chosen at
a syncpoint (they have at least one leader cell).

Depending on the user’s goals he/she can choose which b-
thread types to display. For example, to simply examine the
run’s progress it is useful to view active and active-leader
b-threads, while to understand why something did not occur
it may be appropriate to view also non-active b-threads.

Long traces can be handled by focusing on a trace segment
between two syncpoints. Once such a segment is displayed,
one may navigate forwards and backwards in the full trace,
or jump to the next active cell of a specific b-thread.

Finally, collapsing reduces cell size by hiding its details,
thus allowing for a broader view of the trace in a single
screen. This can be done for a specific syncpoint or for the
entire trace. In collapsed mode, the color and borderline of

190

the cell continue to indicate the cell’s type (see Figure 3) .

C. Implementation

The BPJ package run can create an XML file that contains
trace information, with all necessary details about b-threads,
syncpoints and events. The tool reads this file to create the
trace visualization. The application was developed as a web
application, enabling easy sharing of run results with others,
with no need for software installation. The visualizer was
written using JavaScript and Raphael [7] — a JavaScript
library that uses scalable vector graphics (SVG), and which
enables zooming in and out without losing sharpness.

III. EXAMPLE

In this section, we use our tool to examine a BPJ program
that plays Tic-Tac-Toe against a human. Two players, X and
O, take turns in marking a 3x3 board, each trying to form
a horizontal, vertical or diagonal line to win. See [3] for a
demonstration of this and other examples.

The initial screen shows statistics that can help the user in
initial filtering decisions. For example, one can select only
the 11 active-leader b-threads and the 16 active b-threads
and ignore, for the time being, the 96 non-active and 91
active-follower ones. This can also help in making grouping
or filtering decisions. In the Tic-Tac-Toe example the over
200 b-thread instances arise from only 14 classes. But
each class represents an “externally meaningful” behavior.
For example, the 48 instances of DetectWinByX look for
all possible sequences of events that constitute a win by
player X. Grouping these instances together reduces the
cognitive load by removing some information, and helps in
understanding the overall run. In Figure 1 both filters were
used, and in many cases the combination of class name and
chosen event already provides sufficient explanation.

We now show how to use the visualization to study a
section of a normal run of the program. A partial view
showing the first six syncpoints and a subset of the class
group columns is shown in Figure 2. The X and O events
are triggered alternately, each with its own (row,column)

position. The Click events requested by ClickHandler

represent the human player’s button clicks that are translated
by the program into X moves. By examining the syncpoints
where O events occurred, one can see what strategy (class)
was taken by the computer. By examining the column of the
class or the specific b-thread instance of the leading cell, one
can see the main events that contribute to a specific decision.

The first strategy chosen is DefaultMoves, and it marks
square (1,1). This means that there was no higher priority
move. Indeed examining all b-threads at this syncpoint
shows that no b-thread to the left of DefaultMoves re-
quested any event. Clicking the event set of the cell, one can
see the 9 default moves, from which the first possible one
was chosen. Note that O(2,2) is blocked by SquareTaken

, due to X’s first move. At the next syncpoint in which O

Figure 2. B-thread PreventThirdX takes the lead from
DefaultMoves after events X(2,2) and X(2,1) are triggered.

Figure 3. The b-thread instance DetectXWin(X(0,2),X(2,0)
,X(0,0)) of class DetectXWin incorrectly declares a victory after
events X(0,2), X(2,0) and X(0,0) (requested by UserMove) are chosen.

makes a move (number six), the leading b-thread class is
PreventThirdX. Looking at X’s two steps, we see that X
almost completed the lowest row. This b-thread class has a
higher priority than DefaultMoves, the event it requests is
not blocked, and there are no other requested events from
b-threads with higher priorities.

The visualization can also help find programming errors.
Suppose, for example, that a user played against the com-
puter and was notified that he/she won before completing
any line. To search for the faulty b-thread, we can select
only leader threads and look at the collapsed visualization,
as shown in Figure 3. Following the trace upward, we can
verify that the player’s moves were captured correctly, but
that some instance of class DetectXWin requested the XWin
event following the sequence X(0,0),X(0,2),X(2,0),

which does not form any line. Hence this faulty instance
should probably be removed.

In another game trace, shown in Figure 1, a user creates

191

a row of three Xs and wins. However, the game was
programmed with the intent that the O player (the computer)
never loses, so there appears to be a problem. To find the
fault we visualize the trace, grouping b-threads by class and
showing both active and leader b-threads. First, with the
details hidden, one can find the “bad move”: it is the last
move by O, which did not intercept the two Xs in a row
(see syncpoint 6), and was O(0,2) instead of O(0,0). Why
did this happen? The b-thread PreventThirdX indeed did
request O(0,0), but this event was blocked. Looking a little
to the left, we see the reason: DetectDraw blocks O(0,0).
Once this problem is pinpointed, it is easy to fix.

In general, bugs can most often be detected by looking
for the first syncpoint where the behavior deviates from
expectations, and working backwards from there.

IV. RELATED WORK AND DISCUSSION

Hamou-Lhadj and Lethbridge’s survey [8] covers eight
different trace visualizers and their solutions for scalability.
Capabilities for trace exploration, i.e., streamlined browsing,
and trace compression, i.e., reducing trace size by removing
some components, are discussed and compared. Our tool’s
trace exploration is done by sequential browsing through
syncpoints or by focused scrolling through leader cells, and
trace compression is based, like in most other tools, on clus-
tering similar patterns; e.g., the behavioral-programming-
specific class grouping.

Two LSC visualization tools have been built in our
group in recent years. The first, the Tracer [9], visual-
izes traces of live sequence charts. It uses a hierarchical
Gantt chart to follow scenarios throughout execution. The
present work provides more details about the interaction
between b-threads. The second LSC tool is the scenario
inter-dependency visualizer (SIV) [10], which shows static
and dynamic inter-dependencies between LSC scenarios
using graph-based visualization. In the static view, charts
are represented as nodes and event dependencies as edges.
In the dynamic view, run-time dependencies are drawn as
lines connecting related appearances of an event in different
charts. The current tool adds a trace view, showing in a
single screen the evolution of b-thread dependencies over
time. Integrating these two LSC tools with BPJ appears to
be an interesting future endeavor.

An interactive visualization of time-ordered events was
introduced in Extravis [11]. It displays a summary time-line
view and a more detailed circular view of call relationships
between structural elements in a given time range. In our
current work, b-thread relationships are shown using icons
rather than crossing edges, and the vertical dimension com-
municates details about the dynamic flow of scenarios.

Trace visualizers for multi-thread applications, which are
not behavior-based, such as [12], use a similar display of
time and threads indicating if threads are run, blocked (e.g.,
due to mutual exclusion) or are waiting for an event. In

a recent extensive literature survey [13] Cornelissen et al.
suggested that “The importance of understanding multi-
threading behavior is not reflected by the current research
body”. It may be interesting to see if features of our tool
(e.g., classifications and grouping) can contribute to trace
visualization for classical (non-behavioral) multi-threaded
applications and for aspect-oriented programs.

In addition to further evaluation, future directions of
research for behavioral trace visualization include trace
compression based on event-sequence patterns as in [14],
trace comparison, and integration with the development
environment.

ACKNOWLEDGMENT

The research was supported in part by an Advanced
Research Grant to DH from the European Research Council
(ERC), by the John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute
of Science, and by the Lynn and William Frankel Center for
Computer Science at Ben-Gurion University.

REFERENCES
[1] W. Damm and D. Harel, “LSCs: Breathing Life into Message

Sequence Charts,” Formal Methods in System Design, vol. 19,
pp. 45–80, 2001.

[2] D. Harel, A. Marron, and G. Weiss, “Programming Coordi-
nated Behavior in Java,” in ECOOP, 2010, pp. 250–274.

[3] BPJ Visualization site. [Online]. Available: http://www.cs.
bgu.ac.il/∼geraw/SupWebSite/

[4] T. R. G. Green and M. Petre, “Usability analysis of visual
programming environments: a ‘cognitive dimensions’ frame-
work,” Journal of Visual Languages and Computing, vol. 7,
pp. 131–174, 1996.

[5] D. Moody, “The ”Physics” of Notations: a Scientific Ap-
proach to Designing Visual Notations in Software Engineer-
ing,” in Proc. of the 32nd ACM/IEEE Int. Conf. on Software
Engineering, ser. ICSE ’10, vol. 2, pp. 485–486.

[6] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps,
1983.

[7] (2008) Raphael. [Online]. Available: http://raphaeljs.com
[8] A. Hamou-Lhadj and T. Lethbridge, “A survey of trace

exploration tools and techniques,” in Proc. of the 2004 conf.
of the Centre for Advanced Studies on Collaborative research,
ser. CASCON, pp. 42–55.

[9] S. Maoz and D. Harel, “On Tracing Reactive Systems,”
Software and Systems Modeling, pp. 1–22, 2010.

[10] D. Harel and I. Segall, “Visualizing Inter-Dependencies be-
tween Scenarios,” in Proc. of the 4th ACM symposium on
Software visualization, ser. SoftVis, 2008, pp. 145–153.

[11] B. Cornelissen, A.Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J. van Wijk, “Execution trace Analysis Through
Massive Sequence and Circular Bundle Views,” J. Syst. Softw.,
vol. 81, pp. 2252–2268, 2008.

[12] M. Kessi and J. Vincent, “Performance Monitoring and Vi-
sualization of Large-Sized and Multi-Threaded Applications
with the Paje Framework,” in Proc. of the Int. Multi-Conf. on
Computing in the Global Information Technology, 2006.

[13] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A Systematic Survey of Program Comprehen-
sion through Dynamic Analysis,” IEEE Trans. Softw. Eng.,
vol. 35, no. 5, 2009.

[14] B. Cornelissen and L.Moonen, “Visualizing Similarities in
Execution Traces,” in Int .Workshop on Program Comprehen-
sion through Dynamic Analysis (PCODA), 2007, pp. 6–10.

192

