

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

On Teaching Visual Formalisms

David Harel and Michal Gordon-Kiwkowitz

Vol. 26, No. 3

May/June 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E 	 May/June 2009 I E E E S o f t w a r e � 87

feature

As with most courses at our institute, it was
mainly for MSc students, but several PhD stu-
dents participated too. About 30 students par-
ticipated. Most had an undergraduate degree in
computer science. Some had bioinformatics de-
grees, and a few had undergraduate training in
biology and were performing biological-modeling
research. Coauthor Michal Gordon-Kiwkowitz
was one of the students.

Although other courses teach similar subjects
(for more information, see the “Relation to Other
Courses” sidebar on page 90), as far as we know,
none concentrate on teaching visual formalisms
as executable programs. Our aim was to convince
students that you can use some visual formal-
isms to program complex reactive systems and
that support tools exist that can serve as conven-
tional programming environments. Using those
formalisms and tools, you can program systems
intuitively and graphically. You can then exe-
cute the resulting visual artifacts, analyze them,
and use them to automatically generate a final
implementation.

Two Programming Paradigms
The course was based on two programming par-
adigms. The first is the intra-object approach,

which is the accepted way of programming a
system. In this approach, after identifying the
system’s structure—that is, its objects and their
interrelationships—you program each object’s be-
havior separately, usually in a state-based fashion.
An implementation then consists of the collection
of each object’s behaviors. In the course, we used
object/class diagrams for the structure, statecharts
for behavior,1,2 and Rhapsody (www.telelogic.
com/products/rhapsody/index.cfm) as the sup-
porting tool.

The second paradigm is the interobject ap-
proach. As in the intra-object approach, you first
identify the system’s structure, including the ob-
jects’ local abilities (for example, methods and
operations). However, you then program behav-
ior through multimodal scenarios specifying in-
terobject behaviors. In this approach, we used
live sequence charts (LSCs)3 for behavior and the
Play-Engine4 as the supporting tool.

In line with this, the students built two related
systems of their own choosing, using the intra-
object approach for one and the interobject ap-
proach for the other. They then combined the
two systems using the InterPlay tool.5 In many
courses, students must implement predefined
projects (with a main point of interest being the

I
n the spring semester of the 2004–2005 academic year at the Weizmann Institute of
Science, coauthor David Harel delivered the graduate course Executable Visual Lan-
guages for System Development.

A graduate course
on visual formalisms
for reactive systems
emphasized using
such languages not
only for specification
and requirements
but also (and
predominantly) for
actual execution.

David Harel and Michal Gordon-Kiwkowitz, Weizmann Institute of Science

On Teaching
Visual Formalisms

e duc a t i on

88	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

particular tools and methods that the students
choose).6,7 However, we were particularly inter-
ested in what types of systems the students would
choose when constrained by the requirement to
work with the specified visual languages.

Motivation and
Introductory Material
The course started with two lectures on visuality
and capturing information visually. We emphasized
that pictures are mostly static and that a main chal-
lenge of visuality is specifying and capturing dy-
namics. A quote from “A Map of Verona,” a 1942
poem by Henry Reed, came in handy:

Maps are of place, not time, nor can they say
The surprising height and colour of a
	 building,
Nor where the groups of people bar the way.

So maps, and by extension most visual aids,
are about static artifacts (place), not dynamic ones
(time). They can’t or aren’t intended to capture
time-dependent occurrences, such as groups of
people barring the way. We then showed examples
of using visuality to capture complex data—for
example, bar graphs and zoomable descriptions of
election results.

However, in line with the desire to emphasize
dynamics and to deal with the visual specification
of time-dependent data, we then showed some
extraordinary early examples featured in Edward
Tufte’s books.8–10 These included Charles Joseph
Minard’s famous 1861 illustration of Napoleon’s
march to Moscow and retreat to Kovno (see Fig-
ure 1a) and the 1880 depiction of the entire 1823
railroad schedule and train dynamics between
Paris and Lyon in a single grid-like diagram8 (see
Figure 1b).

Figure 1. Two early
examples of the visual
specification of time-
dependent data: (a) an
1861 graph depicting
Napoleon’s march to
Moscow and retreat to
Kovno and (b) an 1880
depiction of the 1823
railroad schedule and
train dynamics between
Paris and Lyon.8

	 May/June 2009 I E E E S o f t w a r e � 89

We then briefly discussed standard visualization
techniques for computer programs, particularly
flowcharts. By and large, we claimed, flowcharts
have been a failure. They’re used to help visualize
algorithmic processes, but the emphasis here is on
“help.” They have never been widely accepted as
part of a true programming medium. The same
goes for some attempts to devise visual program-
ming languages, which are often 2D schemes for
laying out icons, with the dynamics derived from
the location and proximity thereof. They’re some-
what like a 2D version of APL. In the past, this
had led some people to dismiss visual languages
completely. (Edsger Dijkstra and Frederick Brooks
were among the most outspoken opponents of dia-
grammatic methods and visuality in programming
and software engineering.)

Reactive Systems
and Visual Formalisms
The course then went on to discuss reactive sys-
tems11 and the acute difficulty of capturing their
behavior. For transformational systems, a struc-
tural or functional decomposition and careful
data-flow analysis yield a temporal, dynamic, ex-
ecutable model of the system. However, specifying
such a decomposition for a reactive system says
nothing much about the dynamics. So, specifying
reactivity is much more difficult.

Basically, reactivity constitutes the discrete
part of dynamics. Reactive systems include as spe-
cial cases most types of concurrent, distributed,
computer-embedded, and real-time systems. They
appear in numerous application areas: automotive,
aerospace, interactive software, telecommunica-
tions, hardware, medical instrumentation, control
systems, and so on. Moreover, it’s becoming appar-
ent that many kinds of natural systems, such as in
biology and physics, and systems in the social and
economic sciences and healthcare are also reactive.

Obviously, the choice of reactive systems as the
course’s subject was influenced by the instructor’s
particular research interests. However, more ob-
jectively, it’s justified by the wide agreement that
reactive systems’ behavior is the most difficult as-
pect of system specification and implementation.
Reactive behavior is a crucial, often absolutely
critical, aspect of many kinds of computerized sys-
tems. It exists both between the system and its en-
vironment and among the system’s various parts.
Reactivity complicates everything in system devel-
opment: requirements, specification, design, imple-
mentation, verification, maintenance, and so on.
And although reactivity centers on the discrete, we
argued that continuous aspects can be crucial too,

leading to the notion of a hybrid system.12

To strengthen the point about dynamics, we
drew analogies to transportation. Houses and
bridges are there to be, whereas software and sys-
tems—and cars, trains, and aircraft—are there to
do. Methods and tools that support only the struc-
tural and functional aspects of system design are
good for nonreactive systems. However, for sys-
tems with strong reactive dynamics, they’re like
building a car with no engine.

Sadly, the system development tools offered to
engineers in the 1970s and much of the 1980s (the
so-called CASE tools) were really engineless cars.
They were nice cars—with leather upholstery,
great suspension, and electronic everything—but
they could go nowhere. CASE tools could do excel-
lent graph editing, documentation, requirements
capture and analysis, project management, and
more. However, they couldn’t execute the models
you built with them and didn’t generate full run-
nable code. So, you had to separately write the
crucial parts of the actual code. Imagine a
programming-language environment that has ev-
erything you could dream of to help you program,
except a compiler (or a running interpreter).

So, the problem is to devise a framework for
developing complex reactive systems, consisting
of means for describing and analyzing the struc-
ture but driven and propelled by the behavior.
The underlying tools ought to enable full execut-
ability of the models and should automatically
generate running code.

We then talked in detail about the concept of
a visual formalism,13 especially how you would
apply it to specify reactive behavior. We chose the
term carefully, so that the first word hints at the
desire for visuality, intuition, and clarity and the
second hints at the need for mathematical rigor.
This isn’t about pretty pictures or doodling but
about real, formal, rigorous programming of a
system visually. We discussed that visuality here
means using topology as much as possible (con-
nectivity, “insideness,” disjointedness, open versus
closed curves, and so on) and then using geometry
only if needed (size, shape, line style, color, and
so on). Icons can be used too, but sparingly—we
don’t want an iconic language.

We then discussed formality, stating that a
formal specification isn’t necessarily a formal-
looking specification. A language doesn’t need
a lot of Greek letters to be formal. This led to a
careful discussion of syntax, semantics, and their
relationship, and the special difficulties these raise
when the languages are visual—and thus not nec-
essarily compositional.14

90	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

The Intra-object Approach
In this part of the course, we first described the ba-
sic elements of the language of statecharts.1 This
language is an extension of state transition dia-
grams that’s enriched by a hierarchy of states and
orthogonal (concurrent) components, with transi-
tions allowed between and among all levels.

Statecharts
We reemphasized our point about topological con-
structs taking first-class status. We showed how
connectedness, insideness, detachment, intersec-
tion, and so on are central to statecharts. Also,
they can be visualized easily, and the brain recog-
nizes them immediately.

Next, we described how to link statecharts to
a system’s structure. We chose the object-oriented
(OO) approach (which was really basic to the en-
tire course). So, we described the language of class
diagrams and object model diagrams (OMDs), as
in UML.15 We also discussed OO statecharts in
detail, including their operational semantics2,16
and emphasizing their full executability. We then
described and demonstrated Rhapsody.

We repeatedly emphasized and explained the
resulting models’ intra-object nature. In this ap-
proach, you typically structure a model as an
object system and then specify a behavior by as-
signing a statechart to each object. The entire
collection of statecharts can then be executed or
translated automatically into fully runnable code.

This central aspect of statechart models leads
to two important points. First, in Rhapsody, the
model isn’t executed directly. Rather, the auto-
matically generated code is executed, and the
charts are continuously animated using the ex-
ecution’s feedback. (In contrast, in Statemate,
Rhapsody’s non-OO precursor, statecharts
could be executed directly without code genera-
tion.) Second, the events, conditions, and actions
in a statechart must be written in some language.
A dispute exists about whether this should be a
specially devised action language or a fragment
of a standard programming language. Rhapsody
takes the latter view; we based the course on a
version of the tool in which C++ serves as both
the language for writing the model’s nongraph-
ical parts and the target language for the code

As we mentioned in the main article, our course’s main objec-
tive was to teach executable visual formalisms to graduate
computer science students and researchers. Other courses
most relevant to ours teach either reactive systems, in which
case they typically focus on real-time methods and system
development, or UML, in which case they usually concentrate
on design principles. Our course took neither path, so a com-
parison is difficult.

Courses on Real-Time Systems

Tal Lev-Ami and Shmuel Tyszberowitcz reported on a course
that focused on developing provably correct reactive real-time
systems.1 Like our course, theirs combined theoretical issues
with practical implementation. However, the theory focused
on how to specify requirements and automatically verify the
implementation against those requirements. The course taught
models of both reactive and real-time systems; concepts,
methods, and tools for specification; analysis and design of
real-time systems; the synchronous model; verification meth-
ods; and scheduling algorithms. The students designed sys-
tems, used the Esterel language to implement those systems,
and then used the Esterel simulator to analyze and check the
systems’ behavior. They later verified the system properties
and specified assertions using various model checkers, such
as SMV (Symbolic Model Verifier), TempEst, and XEVE (the
Esterel Verification Environment).

Although we also required students to test their system us-

ing test cases, we assumed previous knowledge of verification
methods and didn’t explicitly teach them. Our point was the
inherent connection between using a visual formalism—for
example, sequence diagrams for implementation and testing,
rather than verification per se.

Also, in Lev-Ami and Tyszberowitcz’s course, the students
selected their projects from a closed set of projects, including
systems such as an answering machine, an elevator controller,
a washing machine, and a home-alarm control module. These
projects were selected to be appropriately small or medium-
sized and assumed that most students were experienced with
the analysis of large information systems.

In contrast, although our students were experienced grad-
uate students as well, we let them select their own project, as
long as it used the constructs they learned in the intra-object
and interobject modeling approaches. (For more on these
approaches, see the main article.) Our course focused more
on contrasting these approaches and not on real-time issues,
such as scheduling.

From a course on reactive and real-time systems similar to
that of Lev-Ami and Tyszberowicz, Ran Lotenberg and Tysz-
berowitcz presented student projects that stressed the full life
cycle of system development.2 They described the projects in
detail so that other instructors could use them. We describe
our projects to provide a peek at the possibilities students see
when they understand reactive systems and the visual tools
for specifying and executing their behavior.

Relation to Other Courses

	 May/June 2009 I E E E S o f t w a r e � 91

generator. (In contrast, Statemate has its own ac-
tion language.)

We then described reactive animation, whereby
you can use a state-of-the-art reactive-system tool,
such as Rhapsody, linked directly and smoothly
with an animation tool, such as Flash or 3D Stu-
dio.17 The goal is to specify systems for which the
highly dynamic front end requires more than a
GUI—namely, true animation. We illustrated this
by a biological model of T cell development in the
thymus.18

The First Project
About halfway through the course, we gave pairs
of students one month to model a small reactive
system. They built a specification with OMDs
and statecharts and implemented it using Rhap-
sody. The basic guideline was to make the example
somewhat complex. The model should have a rea-
sonably nontrivial number of states, it should con-
tain orthogonality and other basic features of the
statechart language, and so on.

The spectrum of systems they chose was ex-
tremely interesting. Some chose the kind of elec-

tronic or technical examples that often illustrate
reactive systems, such as an MP3 player, an air
conditioner, and a car radio. Several chose far less
standard systems, such as a towing company, a
family that owns a falafel store, a combinatorial
bit-shifting game, and—perhaps the most surpris-
ing—a system that plays the darbuka (a Middle
Eastern drum), rhythm changes and all. (For more
on the projects, see the supplement to this article at
www.computer.org/software/webextra.html)

The Interobject Approach
In this part of the course, we first discussed the
language of message sequence charts (MSCs)19
(or the UML version, UML sequence diagrams15),
demonstrating its inadequacy for specifying be-
havior. This language is normally for testing: you
set down some scenarios as requirements and then
test that each scenario is satisfied by some appro-
priate run of the system. To specify the system
model, you use conventional intra-object methods.
However, an MSC contains no prescriptive seman-
tics: it gives only a possible set of occurrences and
a partial order on them.

Other real-time courses such as Wolfgang Halang’s3 are
aimed at engineers and teach design and implementation of
real-time systems, emphasizing such topics as task schedul-
ing, hardware architecture, process interfacing, fault toler-
ance, and project integration. We didn’t deal with such issues
(for example, we ignored scheduling issues unless the mod-
eler wanted to explicitly program them into the behavior).
Many approaches to real-time systems stress determinism;
our course presented the view that a reactive system can also
achieve its goal if it’s nondeterministic or if the determinism
isn’t specified directly but emerges from the implementation.
Halang suggests implementing systems using the real-time
language Pearl and concentrating on its real-time features.
He also discusses selecting operating systems for real time,
suggesting that students implement a small real-time operat-
ing system, which wasn’t in our course’s scope.

UML Courses

Because our course concentrated on modeling techniques,
specifically statecharts and live sequence charts, you could
compare it with courses that teach UML to software engi-
neers. Gregor Engels and his colleagues’ course taught soft-
ware engineering concepts, such as requirements specifi-
cation, analysis, and design, through teaching UML.4 They
claimed that through UML, students can become familiar with
more abstract concepts and design principles.

The two main visual formalisms our course dealt with are

central to UML. Statecharts heavily influenced UML’s con-
ception from its early stages and are its main behavioral
language. The more recent live sequence charts influenced
the move from the message-sequence-chart-like diagrams
of earlier versions of UML to those of UML 2.0. We didn’t
teach UML as simply a means for design but stressed that
you can use some visual formalisms for both design and
implementation.

Other UML courses, such as that of Dirk Frosch-Wilke,5
teach students how to use the diagram notation they’re famil-
iar with from system analysis and design for industrial-scale
projects. We found no courses that focus on teaching expe-
rienced students to program full projects using visual formal-
isms, especially not when behavior is crucial.

References
	 1.	 T. Lev-Ami and S. Tyszberowitcz, “Reactive and Real-Time Systems Course:

How to Get the Most Out of It,” Real-Time Systems, vol. 25, nos. 2–3,
2003, pp. 231–253.

	 2.	 R. Lotenberg and S. Tyszberowitcz, “Student Projects in Reactive and
Real-Time Systems Course,” Proc. 3rd IEEE Real-Time Systems Education
Workshop, IEEE CS Press, 1998, pp. 57–62.

	 3.	 W.A. Halang, “A Curriculum for Real-Time Computer and Control Systems
Engineering,” IEEE Trans. Education, vol. 33, no. 2, 1990, pp. 171-178.

	 4.	 G. Engels et al., “Teaching UML Is Teaching Software Engineering Is
Teaching Abstraction,” Proc. MoDELS 2005 Workshops, LNCS 3844,
Springer, 2005, pp. 306–319.

	 5.	 D. Frosch-Wilke, “Using UML in Software Requirements Analysis—Expe-
riences from Practical Student Project Work,” Proc. Informing Science + IT
Education Conf., Informing Science Inst., 2003, pp. 175–183.

92	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Live Sequence Charts
Next, we introduced LSCs, which are an enrich-
ment of MSCs with universal and existential (hot
and cold) modalities. So, the LSC language can
express mandatory scenarios, conditional scenar-
ios, possible scenarios, forbidden scenarios, and
many other such combinations. Its full version
allows time specifications, symbolic instances,
probabilistic choice, and more.4 As in the intra-
object part of the course, we described the lan-
guage and its features, including how LSCs deal
with objects and their internal capabilities, such
as methods and operations.

We then discussed the two main methods
for working with LSCs. In play-in, you specify
the behavior directly through the system GUI,
and the supporting tool constructs the LSCs
automatically on the fly. Play-out is the rather
subtle execution mechanism of LSCs, which
does what the scenarios prescribe but without
ever causing violations.4 Here too, we described
the language’s operational semantics in detail.
We then introduced and illustrated the Play-
Engine,4 which supports LSCs and the two play
methods.

Besides presenting the “standard” examples,
we presented a nontrivial biological system mod-
eled using LSCs: fate determination of the vulval
precursor cells in the C. elegans nematode.20

The course then discussed InterPlay, a recent
tool that lets you connect interobject and intra-
object specification.5 InterPlay is a simple mecha-
nism for linking models—for example, a Rhap-
sody model with a Play-Engine model—such that
the objects you specify using statecharts are con-
sidered external to the LSC specification and the
Play-Engine. So, both tools can run in tandem,
with the Play-Engine graciously handing over to
Rhapsody whenever it awaits a response from a
statechart-modeled object.

The Second Project
The students then used LSCs and the Play-
Engine to model a system that was an exten-
sion of their first system and used InterPlay to
link them. If this turned out to be unnatural,
students could add a small number of objects to
one of the systems and then link the two parts.
In short, the students had one month to deliver
a fully executable two-part system—an intra-
object part specified with statecharts and an in-
terobject part specified with LSCs. Figure 2 shows
a statechart from the Tow Companies project
and an LSC that connects to the statechart simu-
lator and generates a similar behavior.

A Student’s Viewpoint
At the course’s end, the students filled out a ques-
tionnaire regarding their opinions about the two
approaches, the tools, and the assignments. Here
we present some of the comments, integrated with
Michal Gordon-Kiwkowitz’s opinions.

A Paradigm Change
The course was a sort of microcosm that tried to
convince moderately experienced programmers
that visual languages are a real possibility. One
question that comes to mind after learning about
visual languages and the intra-object and inter-
object approaches is, can visual languages be the
next generation of programming?

One barrier to the acceptance of visual lan-
guages is their difference from traditional ones.
When you’re familiar with one textual program-
ming language, learning the new syntax for an-
other textual language is simple. Consider, for in-
stance, learning VB.NET after programming in
C++. The main methodology is known: start by
writing some kind of main function; create your
classes, variables, and functions; and so on. Only
some of the syntax changes.

In contrast, when starting to program using vi-
sual languages, you must learn both a new syntax
and a new methodology. It’s easy to feel lost; this is
especially true for experienced programmers who
already “speak” a textual programming language.
Many students commented that using languages
they knew would have been easier. Drawing states
to describe an object’s behavior and using play-in
to specify the behavior are intriguing approaches
that are applicable to many software develop-
ment stages. However, the methodology should be
modified to help programmers assimilate the very
different tools of visual languages.

Another barrier is that visual languages aren’t
prominent, either in industry or schools. For vi-
sual programming to be more common, teach-
ing software development must change consider-
ably. This can be done, for example, by enriching
UML courses with discussions of executability
and its crucial importance, or by discussing vi-
sual executable languages when introducing stu-
dents to programming.

Statecharts and Rhapsody
During system planning, programmers often in-
tuitively draw statecharts and the like to clarify
the system to themselves and the different devel-
opment teams. They also commonly use finite
state diagrams to define object behavior. So, the
statechart language is intuitive, making execut-

A formal
specification

isn’t
necessarily
a formal-
looking

specification.

	 May/June 2009 I E E E S o f t w a r e � 93

able programming more like developers’ natural
thought processes.

However, students “speaking” fluent OO pro-
gramming languages found programming using
statecharts more difficult than did less experi-
enced programmers. Even those who had already
encountered concepts similar to statecharts or
worked with UML had to come to grips with the
language’s innovations: the rigid formalism, the
hierarchical nature, and using Rhapsody to ex-
ecute a program.

When students built the model for the first
project, having an OO education in formal lan-
guages hindered the initial development process.
The natural, but incorrect, flow when program-
ming was to create some state with large blocks
of code that handled that state’s behavior, rather
than create several states to describe the behavior.
Initially, students had to pay special attention to
ensure that their system included enough states to
satisfy the assignment’s spirit. In many cases, stu-
dents had to reform blocks of code into states and
transitions, gradually transforming a code-based
model into a state-based one.

Because Rhapsody also lets you write textual
code, some students found using it more natu-
ral than using statecharts. Several students com-
mented that statecharts are a nice idea but that
traditional programming is much easier. It’s tricky
to isolate how much of this feeling comes from
previous familiarity and experience with textual
languages and how much is truly related to the
statechart language. Although knowledge of one
textual language helps you learn others, it might
interfere with acquiring the skills for a totally dif-
ferent approach (something that’s also true for
learning natural languages with different gram-
mar rules).

If you’re skeptical about visual programming
languages presenting a barrier to programmers
familiar with textual languages, consider pro-
gramming’s history. For programmers skilled
with punch cards, writing code must have seemed

quite peculiar, but few people would argue that
this was a detrimental revolution. Similarly,

mode

simulator

evStartAuto
Simulation

evStopAuto
Simulation

manual_simulation

auto_simulation

operation

evStartAutoSimulation

[IS_IN(manual_simulation)][IS_IN(manual_simulation)]

[IS_IN(auto_simulation)][IS_IN(auto_simulation)]

start>

step

generate_
car_problem>

fix_problem>

C

[randSelect < percentCarProblems][randSelect >= percentCarProblems]

tm(3000)/randSelect = rand() % 100

(a)

(b)

sim ExternalSim btnCommand2 txtMain

Set Running(True)

Set Text(Generate Car Problem...)

Set Text(Generate Car Problem-DONE)

Set Text(Generate Car Fix)

Set Text(Generate Car Fix-DONE)

sim.StartType=1
Start1()

curTime:=Time

simMode := Sim.Mode

sim.StartType=2
Start2()

GenCarFault()

GenStatRep()

FALSE

Time>curTime + Sim.Interval

*

simMode=On

SELECT(60:40)

GenCarFix()

Figure 2. Linking the intra-object and
interobject approaches: (a) a statechart
of the towing-company simulator, which
generates random faults to drive the
simulation, and (b) a live sequence chart
for automatic generation of random faults
for the towing-company simulator. The LSC
is connected to the statecharts simulator
using an external object. The students used
InterPlay to execute the systems in tandem.

94	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

assembler programmers resisted the transfer to
high-level languages, believing that they would
have less control over the system’s behavior and
less freedom of choice.

Students taking this course sometimes had a
similar feeling that statecharts were less powerful
than textual languages, although theoretically they
have the same power. So, when students had the
chance to revert to conventional code, they often
preferred it, especially at the course’s beginning.

Not surprisingly, learning takes time. As the
course advanced, the students became more com-
fortable with the language and tool and created
more states and less textual code. Ultimately, using
statecharts and Rhapsody, the students built sys-
tems that worked and were easy to modify, debug,
and especially review.

One lesson from all this is that the audience is
an important factor in teaching visual languages.
Teaching this subject to students familiar with
some standard textual language might be harder
than teaching it to nonprogrammers; it would be
interesting to compare these two groups’ learn-
ing curves. On the other hand, for someone with
no textual-language experience, the course would
probably be a challenge. This is because Rhapsody
was designed from the viewpoint of textual OO
programming, and some textual programming is
almost inevitable when constructing objects, ini-
tializing arrays, and so on.

LSCs and the Play-Engine
Although the interobject approach was new to
most students, they learned it more quickly. This
might be because what the students modeled
mainly involved interaction with the system’s inter-
face, not the system itself or its logic. It might also
be because the LSC language doesn’t enable the use
of low-level textual code as Rhapsody does, which
decreases the potentially bad effects of the interfer-
ence of old habits. With a totally new approach,
which is distinctly different from textual program-
ming, and no ability to revert to the textual tongue,
the learning process was easier than with the intra-
object approach.

You could argue that the students’ programs
don’t provide solid evidence of the interobject ap-
proach’s viability because they were mostly inter-
faces to a different system. However, many applica-
tions today are just that, and the LSC and play-in/
play-out approach is an agile, intuitive way to build
such applications.

Many students mentioned that although con-
necting a GUI to the Play-Engine environment
by specifying the behavior through play-in was

cumbersome (a technical problem that can be eas-
ily overcome in a commercial tool), the approach
was remarkable. It’s precisely how designers think
when writing specifications. Because the students
chose their own project, they were in essence de-
signing their own interface and system. In this case,
the planning and programming are very similar:
“when the user presses the X button, close the
monitoring window,” or “when the user enters a
message in the text box and clicks the OK button,
display the message in the status bar.” So, the spec-
ification and programming occur simultaneously.
This should save many person-hours because the
shift from specification to application is smoother.

The students had much to say about the Play-
Engine’s current (academic, noncommercial) ver-
sion. For example, it doesn’t seem suited for large-
scale projects. However, a leap of faith and a
long-term outlook are necessary for changing how
systems are developed. A large-scale system in any
language requires breaking the project into mod-
ules, and such a system will be difficult to track
and manage in any language. The play-in/play-out
approach, if adopted, will probably evolve to deal
with larger projects.

Perhaps this approach needs time to mature, but
it has advantages over known textual languages.
First, instead of humans describing their request
in the computer’s language, they can specify what
they want almost in their own natural language—
showing, pressing, and doing. This prevents many
mistakes that emerge from the gap between the sys-
tem designer and the application programmer. Sec-
ond, this approach uses as essential programming
tools the mouse and the graphics, which weren’t
available when textual languages were developed.
These tools are powerful and appealing to today’s
generation. Seeing the application in operation
while you’re designing it makes design easier. It can
also help avoid problems that normally would be
evident only after development, which is useful for
agile system development.

Programming for Soft Tasks
Consider system engineers and business manage-
ment and accounting students. Not having much
knowledge in computation and mathematics, they
usually take some Visual Basic courses. So, they
should be able to easily build useful “soft” appli-
cations—light, agile applications for specific tasks,
customized for a specific job. However, after hand-
ing in the course exercises, not many of them ever
write anything in Visual Basic again.

You might wonder whether these people—who
are new to programming and don’t wish to know

One lesson
from all this
is that the

audience is
an important

factor in
teaching visual

languages.

	 May/June 2009 I E E E S o f t w a r e � 95

about it in depth—would be more productive had
they learned a more appealing language. The intu-
itiveness of LSCs and the play-in/play-out approach
might be attractive to them. The question remains,
how would nonprogrammers react to tools that
manipulate visual languages that are closer to their
normal planning and thought processes?

O verall, our experience with the course
was positive. The students gave much
constructive feedback about the lan-

guages and tools. We’ve already applied some of
their comments to the interobject approach and
the relatively new (and still insufficiently tested
and solidified) Play-Engine.

One of the most interesting things this course
demonstrated was the variety of applications for
which these programming languages are appro-
priate, even when used by students with only a
few weeks’ experience with the languages. This
supports David Harel’s long-held belief that visual
formalisms represent a useful, intuitive way to
program systems, not just specify their desired be-
havior in the requirements or specification phases.

As to how best to teach visual formalisms, this
course was only an initial feasibility test; the jury
is still out.

Acknowledgments
We’re grateful to the students who agreed to have
their projects featured in the appendices and then re-
wrote them to fit the article’s style and format: Yishai
Admanit, Mica Arie-Nachimson, Yoram Atir, Erez
Kantor, Guy Nachimson, Avital Sadot, Tal Shay, and
Gera Weiss. PhD students Shahar Maoz and Yaki
Setty, the official teaching assistants, not only helped
design the course and grade the homework but also
delivered lectures. Na’aman Kam gave a lecture about
the C. elegans project. Dan Barak was indispensable
as our systems expert, and his presence was espe-
cially crucial for the InterPlay parts. Michal Gordon-
Kiwkowitz’s research was supported partly by the
Weizmann Institute’s John von Neumann Center for
the Development of Reactive Systems.

References
	 1.	 D. Harel, “Statecharts: A Visual Formalism for Com-

plex Systems,” Science of Computer Programming, vol.
8, no. 3, 1987, pp. 231–274.

	 2.	 D. Harel and E. Gery, “Executable Object Modeling
with Statecharts,” Computer, vol. 30, no. 7, 1997, pp.
31–42.

	 3.	 W. Damm and D. Harel, “LSCs: Breathing Life into
Message Sequence Charts,” Formal Methods in System
Design, vol. 19, no. 1, 2001, pp. 45–80.

	 4.	 D. Harel and R. Marelly, Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-Engine,
Springer, 2003.

	 5.	 D. Barak, D. Harel, and R. Marelly, “InterPlay: Hori-
zontal Scale-Up and Transition to Design in Scenario-
Based Programming,” IEEE Trans. Software Eng., vol.
32, no. 7, 2006, pp. 467–485.

	 6.	 T. Lev-Ami and S. Tyszberowitcz, “Reactive and Real-
Time Systems Course: How to Get the Most Out of
It,” Real-Time Systems, vol. 25, nos. 2–3, 2003, pp.
231–253.

	 7.	 R. Lotenberg and S. Tyszberowitcz, “Student Projects
in Reactive and Real-Time Systems Course,” Proc. 3rd
IEEE Real-Time Systems Education Workshop, IEEE
CS Press, 1998, pp. 57–62.

	 8.	 E.R. Tufte, The Visual Display of Quantitative Infor-
mation, Graphics Press, 1986.

	 9.	 E.R. Tufte, Envisioning Information, Graphics Press,
1990.

	10.	 E.R. Tufte, Visual Explanations: Images and Quanti-
ties, Evidence and Narrative, Graphics Press, 1997.

	11.	 D. Harel and A. Pnueli, “On the Development of Re
active Systems,” Logics and Models of Concurrent
Systems, K.R. Apt, ed., Springer, 1985, pp. 477–498.

	12.	 O. Maler and A. Pnueli, eds., Hybrid Systems: Compu-
tation and Control, LNCS 2623, Springer, 2003.

	13.	 D. Harel, “On Visual Formalisms,” Comm. ACM, vol.
31, no. 5, 1988, pp. 514–530.

	14.	 D. Harel and B. Rumpe, “Meaningful Modeling:
What’s the Semantics of ‘Semantics’?” Computer, vol.
37, no. 10, 2004, pp. 64–72.

	15.	 “UML Resource Page,” Object Management Group,
www.uml.org.

	16.	 D. Harel and H. Kugler, “The Rhapsody Semantics of
Statecharts (or, On the Executable Core of the UML),”
Proc. Integration of Software Specification Techniques
for Applications in Eng., LNCS 3147, Springer, 2004,
pp. 325–354.

	17.	 S. Efroni, D. Harel, and I.R. Cohen, “Reactive Ani
mation: Realistic Modeling of Complex Dynamic Sys
tems,” Computer, vol. 38, no. 1, 2005, pp. 38–47.

	18.	 S. Efroni, D. Harel, and I.R. Cohen, “Towards Rigor-
ous Comprehension of Biological Complexity: Model-
ing, Execution and Visualization of Thymic T Cell
Maturation,” Genome Research, vol. 13, no. 11, 2003,
pp. 2485–2497.

	19.	 ITU-TS Recommendation Z.120: Message Sequence
Chart (MSC), Int’l Telecommunication Union, 1996.

	20.	 N. Kam et al., “Formal Modeling of C. elegans Devel-
opment: A Scenario-Based Approach,” Proc. 1st Int’l
Workshop Computational Methods in Systems Biology
(ICMSB), LNCS 2602, Springer, 2003, pp. 4–20.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
David Harel is the William Sussman Professor in the Weizmann Institute of Science’s
Department of Computer Science and Applied Mathematics. His research interests are
software and systems engineering, modeling biological systems, and the synthesis and
communication of smell. He’s the inventor of statecharts and co-inventor of live sequence
charts, and he codesigned Statemate, Rhapsody, and the Play-Engine. Harel has a PhD
in computer science from MIT. He has received the ACM Karlstrom Outstanding Educator
Award, the Israel Prize, and the ACM Software System Award. He’s a fellow of the ACM,
IEEE, and AAAS. Contact him at dharel@weizmann.ac.il.

Michal Gordon-Kiwkowitz is a PhD student in the Weizmann Institute of Sci-
ence’s Computer Science and Applied Mathematics Department. She’s working on intelligent
human interfaces for programming using the language of live sequence charts. Her research
interests include intelligent human interfaces, visual programming languages, software
design, cognitive psychology, and human and computer vision. Gordon-Kiwkowitz has an
MSc in computer science from the Weizmann Institute of Science. Contact her at michal.
gordon@weizmann.ac.il.

