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feature

As with most courses at our institute, it was 
mainly for MSc students, but several PhD stu-
dents participated too. About 30 students par-
ticipated. Most had an undergraduate degree in 
computer science. Some had bioinformatics de-
grees, and a few had undergraduate training in 
biology and were performing biological-modeling 
research. Coauthor Michal Gordon-Kiwkowitz 
was one of the students.

Although other courses teach similar subjects 
(for more information, see the “Relation to Other 
Courses” sidebar on page 90), as far as we know, 
none concentrate on teaching visual formalisms 
as executable programs. Our aim was to convince 
students that you can use some visual formal-
isms to program complex reactive systems and 
that support tools exist that can serve as conven-
tional programming environments. Using those 
formalisms and tools, you can program systems 
intuitively and graphically. You can then exe-
cute the resulting visual artifacts, analyze them, 
and use them to automatically generate a final 
implementation.

Two Programming Paradigms
The course was based on two programming par-
adigms. The first is the intra-object approach, 

which is the accepted way of programming a 
system. In this approach, after identifying the 
system’s structure—that is, its objects and their 
interrelationships—you program each object’s be-
havior separately, usually in a state-based fashion. 
An implementation then consists of the collection 
of each object’s behaviors. In the course, we used 
object/class diagrams for the structure, statecharts 
for behavior,1,2 and Rhapsody (www.telelogic.
com/products/rhapsody/index.cfm) as the sup-
porting tool.

The second paradigm is the interobject ap-
proach. As in the intra-object approach, you first 
identify the system’s structure, including the ob-
jects’ local abilities (for example, methods and 
operations). However, you then program behav-
ior through multimodal scenarios specifying in-
terobject behaviors. In this approach, we used 
live sequence charts (LSCs)3 for behavior and the 
Play-Engine4 as the supporting tool.

In line with this, the students built two related 
systems of their own choosing, using the intra-
object approach for one and the interobject ap-
proach for the other. They then combined the 
two systems using the InterPlay tool.5 In many 
courses, students must implement predefined 
projects (with a main point of interest being the 
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particular tools and methods that the students 
choose).6,7 However, we were particularly inter-
ested in what types of systems the students would 
choose when constrained by the requirement to 
work with the specified visual languages.

Motivation and  
Introductory Material
The course started with two lectures on visuality 
and capturing information visually. We emphasized 
that pictures are mostly static and that a main chal-
lenge of visuality is specifying and capturing dy-
namics. A quote from “A Map of Verona,” a 1942 
poem by Henry Reed, came in handy:

Maps are of place, not time, nor can they say 
The surprising height and colour of a  
	 building, 
Nor where the groups of people bar the way.

So maps, and by extension most visual aids, 
are about static artifacts (place), not dynamic ones 
(time). They can’t or aren’t intended to capture 
time-dependent occurrences, such as groups of 
people barring the way. We then showed examples 
of using visuality to capture complex data—for 
example, bar graphs and zoomable descriptions of 
election results.

However, in line with the desire to emphasize 
dynamics and to deal with the visual specification 
of time-dependent data, we then showed some 
extraordinary early examples featured in Edward 
Tufte’s books.8–10 These included Charles Joseph 
Minard’s famous 1861 illustration of Napoleon’s 
march to Moscow and retreat to Kovno (see Fig-
ure 1a) and the 1880 depiction of the entire 1823 
railroad schedule and train dynamics between 
Paris and Lyon in a single grid-like diagram8 (see 
Figure 1b).

Figure 1. Two early 
examples of the visual 
specification of time-
dependent data: (a) an 
1861 graph depicting 
Napoleon’s march to 
Moscow and retreat to 
Kovno and (b) an 1880 
depiction of the 1823 
railroad schedule and 
train dynamics between 
Paris and Lyon.8
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We then briefly discussed standard visualization 
techniques for computer programs, particularly 
flowcharts. By and large, we claimed, flowcharts 
have been a failure. They’re used to help visualize 
algorithmic processes, but the emphasis here is on 
“help.” They have never been widely accepted as 
part of a true programming medium. The same 
goes for some attempts to devise visual program-
ming languages, which are often 2D schemes for 
laying out icons, with the dynamics derived from 
the location and proximity thereof. They’re some-
what like a 2D version of APL. In the past, this 
had led some people to dismiss visual languages 
completely. (Edsger Dijkstra and Frederick Brooks 
were among the most outspoken opponents of dia-
grammatic methods and visuality in programming 
and software engineering.)

Reactive Systems  
and Visual Formalisms
The course then went on to discuss reactive sys-
tems11 and the acute difficulty of capturing their 
behavior. For transformational systems, a struc-
tural or functional decomposition and careful 
data-flow analysis yield a temporal, dynamic, ex-
ecutable model of the system. However, specifying 
such a decomposition for a reactive system says 
nothing much about the dynamics. So, specifying 
reactivity is much more difficult.

Basically, reactivity constitutes the discrete 
part of dynamics. Reactive systems include as spe-
cial cases most types of concurrent, distributed,  
computer-embedded, and real-time systems. They 
appear in numerous application areas: automotive, 
aerospace, interactive software, telecommunica-
tions, hardware, medical instrumentation, control 
systems, and so on. Moreover, it’s becoming appar-
ent that many kinds of natural systems, such as in 
biology and physics, and systems in the social and 
economic sciences and healthcare are also reactive.

Obviously, the choice of reactive systems as the 
course’s subject was influenced by the instructor’s 
particular research interests. However, more ob-
jectively, it’s justified by the wide agreement that 
reactive systems’ behavior is the most difficult as-
pect of system specification and implementation. 
Reactive behavior is a crucial, often absolutely 
critical, aspect of many kinds of computerized sys-
tems. It exists both between the system and its en-
vironment and among the system’s various parts. 
Reactivity complicates everything in system devel-
opment: requirements, specification, design, imple-
mentation, verification, maintenance, and so on. 
And although reactivity centers on the discrete, we 
argued that continuous aspects can be crucial too, 

leading to the notion of a hybrid system.12

To strengthen the point about dynamics, we 
drew analogies to transportation. Houses and 
bridges are there to be, whereas software and sys-
tems—and cars, trains, and aircraft—are there to 
do. Methods and tools that support only the struc-
tural and functional aspects of system design are 
good for nonreactive systems. However, for sys-
tems with strong reactive dynamics, they’re like 
building a car with no engine.

Sadly, the system development tools offered to 
engineers in the 1970s and much of the 1980s (the 
so-called CASE tools) were really engineless cars. 
They were nice cars—with leather upholstery, 
great suspension, and electronic everything—but 
they could go nowhere. CASE tools could do excel-
lent graph editing, documentation, requirements 
capture and analysis, project management, and 
more. However, they couldn’t execute the models 
you built with them and didn’t generate full run-
nable code. So, you had to separately write the  
crucial parts of the actual code. Imagine a  
programming-language environment that has ev-
erything you could dream of to help you program, 
except a compiler (or a running interpreter).

So, the problem is to devise a framework for 
developing complex reactive systems, consisting 
of means for describing and analyzing the struc-
ture but driven and propelled by the behavior. 
The underlying tools ought to enable full execut-
ability of the models and should automatically 
generate running code.

We then talked in detail about the concept of 
a visual formalism,13 especially how you would 
apply it to specify reactive behavior. We chose the 
term carefully, so that the first word hints at the 
desire for visuality, intuition, and clarity and the 
second hints at the need for mathematical rigor. 
This isn’t about pretty pictures or doodling but 
about real, formal, rigorous programming of a 
system visually. We discussed that visuality here 
means using topology as much as possible (con-
nectivity, “insideness,” disjointedness, open versus 
closed curves, and so on) and then using geometry 
only if needed (size, shape, line style, color, and 
so on). Icons can be used too, but sparingly—we 
don’t want an iconic language.

We then discussed formality, stating that a 
formal specification isn’t necessarily a formal- 
looking specification. A language doesn’t need 
a lot of Greek letters to be formal. This led to a 
careful discussion of syntax, semantics, and their 
relationship, and the special difficulties these raise 
when the languages are visual—and thus not nec-
essarily compositional.14
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The Intra-object Approach
In this part of the course, we first described the ba-
sic elements of the language of statecharts.1 This 
language is an extension of state transition dia-
grams that’s enriched by a hierarchy of states and 
orthogonal (concurrent) components, with transi-
tions allowed between and among all levels.

Statecharts
We reemphasized our point about topological con-
structs taking first-class status. We showed how 
connectedness, insideness, detachment, intersec-
tion, and so on are central to statecharts. Also, 
they can be visualized easily, and the brain recog-
nizes them immediately.

Next, we described how to link statecharts to 
a system’s structure. We chose the object-oriented 
(OO) approach (which was really basic to the en-
tire course). So, we described the language of class 
diagrams and object model diagrams (OMDs), as 
in UML.15 We also discussed OO statecharts in 
detail, including their operational semantics2,16 
and emphasizing their full executability. We then 
described and demonstrated Rhapsody.

We repeatedly emphasized and explained the 
resulting models’ intra-object nature. In this ap-
proach, you typically structure a model as an 
object system and then specify a behavior by as-
signing a statechart to each object. The entire 
collection of statecharts can then be executed or 
translated automatically into fully runnable code.

This central aspect of statechart models leads 
to two important points. First, in Rhapsody, the 
model isn’t executed directly. Rather, the auto-
matically generated code is executed, and the 
charts are continuously animated using the ex-
ecution’s feedback. (In contrast, in Statemate, 
Rhapsody’s non-OO precursor, statecharts 
could be executed directly without code genera-
tion.) Second, the events, conditions, and actions 
in a statechart must be written in some language. 
A dispute exists about whether this should be a 
specially devised action language or a fragment 
of a standard programming language. Rhapsody 
takes the latter view; we based the course on a 
version of the tool in which C++ serves as both 
the language for writing the model’s nongraph-
ical parts and the target language for the code 

As we mentioned in the main article, our course’s main objec-
tive was to teach executable visual formalisms to graduate 
computer science students and researchers. Other courses 
most relevant to ours teach either reactive systems, in which 
case they typically focus on real-time methods and system 
development, or UML, in which case they usually concentrate 
on design principles. Our course took neither path, so a com-
parison is difficult.

Courses on Real-Time Systems

Tal Lev-Ami and Shmuel Tyszberowitcz reported on a course 
that focused on developing provably correct reactive real-time 
systems.1 Like our course, theirs combined theoretical issues 
with practical implementation. However, the theory focused 
on how to specify requirements and automatically verify the 
implementation against those requirements. The course taught 
models of both reactive and real-time systems; concepts, 
methods, and tools for specification; analysis and design of 
real-time systems; the synchronous model; verification meth-
ods; and scheduling algorithms. The students designed sys-
tems, used the Esterel language to implement those systems, 
and then used the Esterel simulator to analyze and check the 
systems’ behavior. They later verified the system properties 
and specified assertions using various model checkers, such 
as SMV (Symbolic Model Verifier), TempEst, and XEVE (the 
Esterel Verification Environment).

Although we also required students to test their system us-

ing test cases, we assumed previous knowledge of verification 
methods and didn’t explicitly teach them. Our point was the 
inherent connection between using a visual formalism—for 
example, sequence diagrams for implementation and testing, 
rather than verification per se.

Also, in Lev-Ami and Tyszberowitcz’s course, the students 
selected their projects from a closed set of projects, including 
systems such as an answering machine, an elevator controller, 
a washing machine, and a home-alarm control module. These 
projects were selected to be appropriately small or medium-
sized and assumed that most students were experienced with 
the analysis of large information systems.

In contrast, although our students were experienced grad-
uate students as well, we let them select their own project, as 
long as it used the constructs they learned in the intra-object 
and interobject modeling approaches. (For more on these 
approaches, see the main article.) Our course focused more 
on contrasting these approaches and not on real-time issues, 
such as scheduling.

From a course on reactive and real-time systems similar to 
that of Lev-Ami and Tyszberowicz, Ran Lotenberg and Tysz-
berowitcz presented student projects that stressed the full life 
cycle of system development.2 They described the projects in 
detail so that other instructors could use them. We describe 
our projects to provide a peek at the possibilities students see 
when they understand reactive systems and the visual tools 
for specifying and executing their behavior.

Relation to Other Courses  
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generator. (In contrast, Statemate has its own ac-
tion language.)

We then described reactive animation, whereby 
you can use a state-of-the-art reactive-system tool, 
such as Rhapsody, linked directly and smoothly 
with an animation tool, such as Flash or 3D Stu-
dio.17 The goal is to specify systems for which the 
highly dynamic front end requires more than a 
GUI—namely, true animation. We illustrated this 
by a biological model of T cell development in the 
thymus.18

The First Project
About halfway through the course, we gave pairs 
of students one month to model a small reactive 
system. They built a specification with OMDs 
and statecharts and implemented it using Rhap-
sody. The basic guideline was to make the example 
somewhat complex. The model should have a rea-
sonably nontrivial number of states, it should con-
tain orthogonality and other basic features of the 
statechart language, and so on.

The spectrum of systems they chose was ex-
tremely interesting. Some chose the kind of elec-

tronic or technical examples that often illustrate 
reactive systems, such as an MP3 player, an air 
conditioner, and a car radio. Several chose far less 
standard systems, such as a towing company, a 
family that owns a falafel store, a combinatorial 
bit-shifting game, and—perhaps the most surpris-
ing—a system that plays the darbuka (a Middle 
Eastern drum), rhythm changes and all. (For more 
on the projects, see the supplement to this article at 
www.computer.org/software/webextra.html)

The Interobject Approach
In this part of the course, we first discussed the 
language of message sequence charts (MSCs)19 
(or the UML version, UML sequence diagrams15), 
demonstrating its inadequacy for specifying be-
havior. This language is normally for testing: you 
set down some scenarios as requirements and then 
test that each scenario is satisfied by some appro-
priate run of the system. To specify the system 
model, you use conventional intra-object methods. 
However, an MSC contains no prescriptive seman-
tics: it gives only a possible set of occurrences and 
a partial order on them.

Other real-time courses such as Wolfgang Halang’s3 are 
aimed at engineers and teach design and implementation of 
real-time systems, emphasizing such topics as task schedul-
ing, hardware architecture, process interfacing, fault toler-
ance, and project integration. We didn’t deal with such issues 
(for example, we ignored scheduling issues unless the mod-
eler wanted to explicitly program them into the behavior). 
Many approaches to real-time systems stress determinism; 
our course presented the view that a reactive system can also 
achieve its goal if it’s nondeterministic or if the determinism 
isn’t specified directly but emerges from the implementation. 
Halang suggests implementing systems using the real-time 
language Pearl and concentrating on its real-time features. 
He also discusses selecting operating systems for real time, 
suggesting that students implement a small real-time operat-
ing system, which wasn’t in our course’s scope.

UML Courses

Because our course concentrated on modeling techniques, 
specifically statecharts and live sequence charts, you could 
compare it with courses that teach UML to software engi-
neers. Gregor Engels and his colleagues’ course taught soft-
ware engineering concepts, such as requirements specifi-
cation, analysis, and design, through teaching UML.4 They 
claimed that through UML, students can become familiar with 
more abstract concepts and design principles.

The two main visual formalisms our course dealt with are 

central to UML. Statecharts heavily influenced UML’s con-
ception from its early stages and are its main behavioral 
language. The more recent live sequence charts influenced 
the move from the message-sequence-chart-like diagrams 
of earlier versions of UML to those of UML 2.0. We didn’t 
teach UML as simply a means for design but stressed that 
you can use some visual formalisms for both design and 
implementation.

Other UML courses, such as that of Dirk Frosch-Wilke,5 
teach students how to use the diagram notation they’re famil-
iar with from system analysis and design for industrial-scale 
projects. We found no courses that focus on teaching expe-
rienced students to program full projects using visual formal-
isms, especially not when behavior is crucial.
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Live Sequence Charts
Next, we introduced LSCs, which are an enrich-
ment of MSCs with universal and existential (hot 
and cold) modalities. So, the LSC language can 
express mandatory scenarios, conditional scenar-
ios, possible scenarios, forbidden scenarios, and 
many other such combinations. Its full version 
allows time specifications, symbolic instances, 
probabilistic choice, and more.4 As in the intra-
object part of the course, we described the lan-
guage and its features, including how LSCs deal 
with objects and their internal capabilities, such 
as methods and operations.

We then discussed the two main methods 
for working with LSCs. In play-in, you specify 
the behavior directly through the system GUI, 
and the supporting tool constructs the LSCs 
automatically on the fly. Play-out is the rather 
subtle execution mechanism of LSCs, which 
does what the scenarios prescribe but without 
ever causing violations.4 Here too, we described 
the language’s operational semantics in detail. 
We then introduced and illustrated the Play- 
Engine,4 which supports LSCs and the two play 
methods.

Besides presenting the “standard” examples, 
we presented a nontrivial biological system mod-
eled using LSCs: fate determination of the vulval 
precursor cells in the C. elegans nematode.20

The course then discussed InterPlay, a recent 
tool that lets you connect interobject and intra-
object specification.5 InterPlay is a simple mecha-
nism for linking models—for example, a Rhap-
sody model with a Play-Engine model—such that 
the objects you specify using statecharts are con-
sidered external to the LSC specification and the 
Play-Engine. So, both tools can run in tandem, 
with the Play-Engine graciously handing over to 
Rhapsody whenever it awaits a response from a 
statechart-modeled object.

The Second Project
The students then used LSCs and the Play- 
Engine to model a system that was an exten-
sion of their first system and used InterPlay to 
link them. If this turned out to be unnatural, 
students could add a small number of objects to 
one of the systems and then link the two parts. 
In short, the students had one month to deliver 
a fully executable two-part system—an intra- 
object part specified with statecharts and an in-
terobject part specified with LSCs. Figure 2 shows  
a statechart from the Tow Companies project 
and an LSC that connects to the statechart simu-
lator and generates a similar behavior.

A Student’s Viewpoint
At the course’s end, the students filled out a ques-
tionnaire regarding their opinions about the two 
approaches, the tools, and the assignments. Here 
we present some of the comments, integrated with 
Michal Gordon-Kiwkowitz’s opinions.

A Paradigm Change
The course was a sort of microcosm that tried to 
convince moderately experienced programmers 
that visual languages are a real possibility. One 
question that comes to mind after learning about 
visual languages and the intra-object and inter-
object approaches is, can visual languages be the 
next generation of programming?

One barrier to the acceptance of visual lan-
guages is their difference from traditional ones. 
When you’re familiar with one textual program-
ming language, learning the new syntax for an-
other textual language is simple. Consider, for in-
stance, learning VB.NET after programming in 
C++. The main methodology is known: start by 
writing some kind of main function; create your 
classes, variables, and functions; and so on. Only 
some of the syntax changes.

In contrast, when starting to program using vi-
sual languages, you must learn both a new syntax 
and a new methodology. It’s easy to feel lost; this is 
especially true for experienced programmers who 
already “speak” a textual programming language. 
Many students commented that using languages 
they knew would have been easier. Drawing states 
to describe an object’s behavior and using play-in 
to specify the behavior are intriguing approaches 
that are applicable to many software develop-
ment stages. However, the methodology should be 
modified to help programmers assimilate the very 
different tools of visual languages.

Another barrier is that visual languages aren’t 
prominent, either in industry or schools. For vi-
sual programming to be more common, teach-
ing software development must change consider-
ably. This can be done, for example, by enriching 
UML courses with discussions of executability 
and its crucial importance, or by discussing vi-
sual executable languages when introducing stu-
dents to programming.

Statecharts and Rhapsody
During system planning, programmers often in-
tuitively draw statecharts and the like to clarify 
the system to themselves and the different devel-
opment teams. They also commonly use finite 
state diagrams to define object behavior. So, the 
statechart language is intuitive, making execut-

A formal 
specification 

isn’t 
necessarily  
a formal-
looking 

specification.
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able programming more like developers’ natural 
thought processes.

However, students “speaking” fluent OO pro-
gramming languages found programming using 
statecharts more difficult than did less experi-
enced programmers. Even those who had already 
encountered concepts similar to statecharts or 
worked with UML had to come to grips with the 
language’s innovations: the rigid formalism, the 
hierarchical nature, and using Rhapsody to ex-
ecute a program.

When students built the model for the first 
project, having an OO education in formal lan-
guages hindered the initial development process. 
The natural, but incorrect, flow when program-
ming was to create some state with large blocks 
of code that handled that state’s behavior, rather 
than create several states to describe the behavior. 
Initially, students had to pay special attention to 
ensure that their system included enough states to 
satisfy the assignment’s spirit. In many cases, stu-
dents had to reform blocks of code into states and 
transitions, gradually transforming a code-based 
model into a state-based one.

Because Rhapsody also lets you write textual 
code, some students found using it more natu-
ral than using statecharts. Several students com-
mented that statecharts are a nice idea but that 
traditional programming is much easier. It’s tricky 
to isolate how much of this feeling comes from 
previous familiarity and experience with textual 
languages and how much is truly related to the 
statechart language. Although knowledge of one 
textual language helps you learn others, it might 
interfere with acquiring the skills for a totally dif-
ferent approach (something that’s also true for 
learning natural languages with different gram-
mar rules).

If you’re skeptical about visual programming 
languages presenting a barrier to programmers 
familiar with textual languages, consider pro-
gramming’s history. For programmers skilled 
with punch cards, writing code must have seemed 

quite peculiar, but few people would argue that 
this was a detrimental revolution. Similarly,  
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Figure 2. Linking the intra-object and 
interobject approaches: (a) a statechart 
of the towing-company simulator, which 
generates random faults to drive the 
simulation, and (b) a live sequence chart 
for automatic generation of random faults 
for the towing-company simulator. The LSC 
is connected to the statecharts simulator 
using an external object. The students used 
InterPlay to execute the systems in tandem.
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assembler programmers resisted the transfer to 
high-level languages, believing that they would 
have less control over the system’s behavior and 
less freedom of choice.

Students taking this course sometimes had a 
similar feeling that statecharts were less powerful 
than textual languages, although theoretically they 
have the same power. So, when students had the 
chance to revert to conventional code, they often 
preferred it, especially at the course’s beginning.

Not surprisingly, learning takes time. As the 
course advanced, the students became more com-
fortable with the language and tool and created 
more states and less textual code. Ultimately, using 
statecharts and Rhapsody, the students built sys-
tems that worked and were easy to modify, debug, 
and especially review.

One lesson from all this is that the audience is 
an important factor in teaching visual languages. 
Teaching this subject to students familiar with 
some standard textual language might be harder 
than teaching it to nonprogrammers; it would be 
interesting to compare these two groups’ learn-
ing curves. On the other hand, for someone with 
no textual-language experience, the course would 
probably be a challenge. This is because Rhapsody 
was designed from the viewpoint of textual OO 
programming, and some textual programming is 
almost inevitable when constructing objects, ini-
tializing arrays, and so on.

LSCs and the Play-Engine
Although the interobject approach was new to 
most students, they learned it more quickly. This 
might be because what the students modeled 
mainly involved interaction with the system’s inter-
face, not the system itself or its logic. It might also 
be because the LSC language doesn’t enable the use 
of low-level textual code as Rhapsody does, which 
decreases the potentially bad effects of the interfer-
ence of old habits. With a totally new approach, 
which is distinctly different from textual program-
ming, and no ability to revert to the textual tongue, 
the learning process was easier than with the intra-
object approach.

You could argue that the students’ programs 
don’t provide solid evidence of the interobject ap-
proach’s viability because they were mostly inter-
faces to a different system. However, many applica-
tions today are just that, and the LSC and play-in/
play-out approach is an agile, intuitive way to build 
such applications.

Many students mentioned that although con-
necting a GUI to the Play-Engine environment 
by specifying the behavior through play-in was 

cumbersome (a technical problem that can be eas-
ily overcome in a commercial tool), the approach 
was remarkable. It’s precisely how designers think 
when writing specifications. Because the students 
chose their own project, they were in essence de-
signing their own interface and system. In this case, 
the planning and programming are very similar: 
“when the user presses the X button, close the 
monitoring window,” or “when the user enters a 
message in the text box and clicks the OK button, 
display the message in the status bar.” So, the spec-
ification and programming occur simultaneously. 
This should save many person-hours because the 
shift from specification to application is smoother.

The students had much to say about the Play-
Engine’s current (academic, noncommercial) ver-
sion. For example, it doesn’t seem suited for large-
scale projects. However, a leap of faith and a 
long-term outlook are necessary for changing how 
systems are developed. A large-scale system in any 
language requires breaking the project into mod-
ules, and such a system will be difficult to track 
and manage in any language. The play-in/play-out 
approach, if adopted, will probably evolve to deal 
with larger projects.

Perhaps this approach needs time to mature, but 
it has advantages over known textual languages. 
First, instead of humans describing their request 
in the computer’s language, they can specify what 
they want almost in their own natural language—
showing, pressing, and doing. This prevents many 
mistakes that emerge from the gap between the sys-
tem designer and the application programmer. Sec-
ond, this approach uses as essential programming 
tools the mouse and the graphics, which weren’t 
available when textual languages were developed. 
These tools are powerful and appealing to today’s 
generation. Seeing the application in operation 
while you’re designing it makes design easier. It can 
also help avoid problems that normally would be 
evident only after development, which is useful for 
agile system development.

Programming for Soft Tasks
Consider system engineers and business manage-
ment and accounting students. Not having much 
knowledge in computation and mathematics, they 
usually take some Visual Basic courses. So, they 
should be able to easily build useful “soft” appli-
cations—light, agile applications for specific tasks, 
customized for a specific job. However, after hand-
ing in the course exercises, not many of them ever 
write anything in Visual Basic again.

You might wonder whether these people—who 
are new to programming and don’t wish to know 
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about it in depth—would be more productive had 
they learned a more appealing language. The intu-
itiveness of LSCs and the play-in/play-out approach 
might be attractive to them. The question remains, 
how would nonprogrammers react to tools that 
manipulate visual languages that are closer to their 
normal planning and thought processes?

O verall, our experience with the course 
was positive. The students gave much 
constructive feedback about the lan-

guages and tools. We’ve already applied some of 
their comments to the interobject approach and 
the relatively new (and still insufficiently tested 
and solidified) Play-Engine.

One of the most interesting things this course 
demonstrated was the variety of applications for 
which these programming languages are appro-
priate, even when used by students with only a 
few weeks’ experience with the languages. This 
supports David Harel’s long-held belief that visual 
formalisms represent a useful, intuitive way to 
program systems, not just specify their desired be-
havior in the requirements or specification phases.

As to how best to teach visual formalisms, this 
course was only an initial feasibility test; the jury 
is still out.
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