
Improving Performance and Applying Cascades in

Visual Classification

Master Thesis

Michal Kiwkowitz

Contents

1 Introduction... 4
2 Evaluating Classification .. 4

2.1 Evaluation Methods ... 5
2.2 Practical Application of Classification .. 8
2.3 Machine Classification vs. Human Classification ... 9
2.4 False Negative Errors .. 10
2.5 False Positive Errors .. 11

3 Existing Classification Methods ... 12
3.1 Feature Representation .. 13

3.1.1 Fragments.. 13
3.1.2 Gabor features and wavelets ... 14
3.1.3 SIFT .. 14
3.1.4 Improving Features - Hierarchies and Semantics ... 14
3.1.5 Constellation Models .. 15
3.1.6 Satellites for Similar Classes... 15

3.2 Learning and Classification ... 16
3.2.1 Max-Min Selection and Bayesian Classification .. 16
3.2.2 SVM .. 17
3.2.3 Ensemble Methods .. 18
3.2.4 Bagging ... 18
3.2.5 Boosting .. 18
3.2.6 Cascades.. 19

3.3 Online Classification ... 19
4 Improving Classification ... 20

4.1 Learning More from the Training Set .. 20
4.1.1 Improving the Similarity Measure .. 21
4.1.2 Improving the Combination of Features into a Score ... 23
4.1.3 Using the Configuration to Improve Classification .. 23
4.1.4 Perspective Fragments .. 24
4.1.5 Anti-Fragments ... 26

4.1.5.1 Motivation and Algorithm .. 26
4.1.5.2 Experiment and Results .. 27

4.1.6 Satellite Fragments as a Second Stage .. 29
4.1.6.1 Algorithm and Motivation .. 29
4.1.6.2 Experiment and Results .. 30

4.2 Classifying in the Setting of a Growing Training Set .. 33
4.2.1 The Training set Limit .. 33

4.2.1.1 Training set Experiments ... 34
5 Cascades in Classification .. 37

5.1 Three-Way Cascades ... 38
5.1.1 Cascade Processing Region and Cost ... 40
5.1.2 Orthogonal Cascade Processing .. 42
5.1.3 On-Line cascades .. 43

 2

5.1.4 Three-Way Cascade Results ... 44
5.2 Configuration Cascade ... 47

5.2.1 Theory ... 47
5.2.2 Algorithm .. 49
5.2.3 Results ... 50

6 Conclusions... 54
7 Future Work .. 56

7.1 Improving Classification ... 56
7.2 Improving the Anti Fragments concept ... 56
7.3 Extending the Cascade ... 57
7.4 Human Vision Experiments ... 57

8 Appendix .. 58
8.1 Max-Min Fragment Selection and Bayesian Classification ... 58
8.2 AdaBoost .. Error! Bookmark not defined.
8.3 Anti-Fragments .. 60
8.4 Sattelite Fragments as a Second Stage ... 61
8.5 Three-Way Cascade, Determining the Processing Region .. 65
8.6 Online Three-Way Cascade using AdaBoost .. 67
8.7 Configuration Cascade ... 68

9 Acknowledgment .. 69
10 References ... 70

 3

ABSTRACT
Computer-based object classification has improved consistently over the last decade, but

the performance of current computational schemes is still significantly lower than human

classification performance. In addition, the errors made by current classifiers are often

unreasonable by human standards. Since improvements to performance become

increasingly difficult to achieve when absolute performance is already high, it is currently

unclear which future directions will be useful for reaching truly human level performance.

In this work I examined two general directions for future improvements in current

classification scheme. One general direction assumes that current methods extract only a

part of the available information for classification from the training set, and attempts to

identify the main possible sources of additional information. I examined a number of

plausible sources for possible improvements. Some of the methods under study, but we

concluded that they are unlikely to be sufficient by themselves to reach human-level

performance.

The second general direction assumes that a major limitation comes from the size of the

training set: training sets used in practice may be inherently insufficient to capture all the

necessary variations needed to learn a truly high-performance classifier. Our experiments

suggested that classification performance indeed increase monotonically and without

clear saturation as the training set increases in size. We also found that the set of features

used for classification needs to be increased to capture the additional information in the

increased training set.

These results have two implications to the classification scheme. First, they raise the

advantage of constructing classifiers in an on-line manner, in which the classifier is

continuously improved by new examples. Second, they raise the problem of increasing

computational load as the number of features used for classification increases.

To deal with these problems we developed and tested two classification schemes. Both are

multi-stage, or ‘cascade’ methods in which all images are analyzed in the first stage, and,

depending on the results, only some of them are analyzed further by subsequent stages.

The first of these methods was a so-called 3-way cascade, which is an extension of

previously used cascade methods. In this method, a first-level classifier is first applied to

the new image to be classified. If the response is high or low enough a decision is made,

otherwise, a second-level classifier, which uses more features, is applied to the image to

allow a more confident response. The second multi-stage scheme we developed is the so-

called configuration cascade. In this approach, the decision to process an image in

additional stages is based on the particular feature configuration discovered in the image.

Using this scheme, erroneous configurations of the first-level classifier are processed by a

second-level classifier which uses more features and achieves better performance. We

showed that the number of possible erroneous configurations is bounded in practice, and

that the error on the erroneous configurations is reduced after additional processing. This

scheme leads to a continuous improvement in performance, with only a small increase in

computational cost.

 4

1 Introduction

The field of visual recognition has been making continues progress in the area of

classification and recognition. However, up to date, no classifier for a real complex class

has achieved classification without errors or fully human-level performance. In this work

we examine the sources of these errors, and possible methods to improve performance

without a large increase in computational cost.

We start by investigating the type of errors made, using as an example the fragment based

approach [2], to classify faces and non faces, and evaluate in Section 2 the classifier's

performance and the errors it makes. We then survey existing classifiers and their

advantages and drawbacks, in Section 3 . In Section 4, we examine different ideas for

improving the performance of the fragment based classifier. We continue by identifying

the training set size as an inherent boundary to the performance, and the implications of

this observation on classifier's computational cost in Section 4.2 . We suggest in Section 5

two methods of cascades, which can improve performance with relatively low additional

computational cost. The first, a three-way cascade described in Section 5.1 , which

performs further processing on images near the margin, and the second, a configuration

cascade described in Section 5.2 which uses the configuration of the detected features to

determine whether an image requires additional processing in the cascade.

In the next section we examine more closely the performance of current classifiers and our

goals and motivations for the current work.

2 Evaluating Classification

The goals of our work are to answer the following questions:

• Can the performance of current state-of-the-art visual classifiers be considered

satisfactory?

• Are we learning all we can learn from the training data?

• What are possible ways of improving performance further?

In this section we survey methods of evaluating classification performance. We then

consider the performance for practical applications and examine the amount of errors

 5

made by machine classifiers compared with human performance. The errors can be

generally divided into two types: false negative errors, images that have been rejected

falsely, and false positive errors, images in which the class has been falsely detected. We

begin with an overview of the methods used to evaluate a classifier.

2.1 Evaluation Methods

Judging the performance of a classifier is not a trivial question. Many authors plot and

compare the Receiver Operating Characteristic (ROC) curve (seen in Figure 1) of different

classifiers, and although error rates may be small and satisfactory, the error instances

themselves are quite alarming, Figure 2 and Figure 3 show some examples. This graph

enables understanding of the relationship between the different errors made by the

classifier. A threshold on the response of the classifier determines a desired hit rate and

respectively a false positives rate that depends on the classifier's ROC curve. In an ideal

world we would be able to set the threshold so that our classifier will get 100% hits and

0% false positives, a perfect classifier with no errors. In reality, there is no perfect

threshold, and the possibility is to select some acceptable mixture of false positives and

false negatives.

The ROC, although very useful, is not a simple parameter to compare. A measure that is

easier to compare is the Equal Error Rate (EER) of a classifier. This is the location on the

ROC curve where the percent of false positives equals the percent of false negatives. In a

perfect classifier the value of the EER will be zero and therefore there will be a threshold

that allows the classifier to make a perfect decision every time. A similar measure is the

Minimum Error which provides the minimum total error (false positives and false

negatives). The EER and the Minimum Error are usually found at close locations on the

ROC curve. Another way to appraise the ROC is to measure the percent of the area below

the ROC curve; the perfect ROC will have a value of one.

For most real world classification problems, there are no perfect classifiers; many

classifiers improve the classification by improving the ROC curve at the top left corner. In

many cases the changes are very subtle and the comparison of EER, area or even the

different ROC curve misses a lot of information about the classifier. Given two classifiers

with the same ROC or very close ROC how can they be compared? Consider a vendor that

 6

is purchasing a classifier that uses images to alert him when a police car passes by his

property. He is offered two classifiers with very good ROC curves but imperfect ones.

Shouldn’t he consider the type of false positives made by these as an additional method for

rating their performance? Wouldn’t a classifier that detects a cab as a police car every

once in a while be better than one that detects a cat or just the wind in the trees? Similarly,

when a child calls a cow a horse, his parents will happily just let him know that he is

wrong, but shouldn’t they pay a little more attention if their child is using the word cow

when he encounters shoes or when staring at a clear wall? The error instances themselves

are important and there is much to learn from them. We next examine the EER and the

type of errors made by current classifiers.

Figure 1: Classifier Performance. The Reciever Operating Characteristic curve of a face

classifier using seven fragments as described in [3]. Although the ROC is good, it is

imperfect.

 7

Figure 2: Faces Found by Face Classifiers. Images detected as faces by two different

face classifiers with high performance. On the top row are results from a fragment

classifier as in [3], the fragments detected are marked. On the bottom row are false faces

detected by the Betaface classifier [8]. This classifier detects the eyes in an image and

marks them in green.

Figure 3: Cows Found using SIFT. These images recived very high scores and were

classified as cows by a classifier that uses SIFT features [7], we show a sample cow in the

red rectangle.

 8

Figure 4: Classifier Performance on Specific Images. On the top row are some misses of

the classifier, in the center are some false alarms or false positives. The bottom row shows

some images that we believe may serve as more reasonable false alarms.

2.2 Practical Application of Classification

Although the equal error rate in some of the best classifiers can reach 2-6 %, this is still

quite high. Consider searching a natural scene and trying to determine if there is a horse in

the image. Suppose that the image is 1000 pixels high by 1000 pixels wide, and we expect

the horse object to be found in a window of around 50 by 50 pixels. Searching the image

serially with local windows with a 50% overlap, we will need to check 40x40 locations,

which is 1600 sub windows. With an error rate of 2%, this means that 32 sub windows

will be falsely detected as horses, which is not very practical. In the next section we

contrast human performance with the performance of machine classifiers.

 9

2.3 Machine Classification vs. Human Classification

If humans had the false alarm rate mentioned in the previous section, they would see

horses everywhere, or in other words they would be prone to mistakes and visual

hallucinations. Compared with State-of-the-art classifier's performance, humans perform

better: for most databases or classification tasks there is no question whether machine

performance is better or poorer than that of humans, humans outperform current

classifiers. When comparing machine performance to human performance, the task of

classification is harder on machines, given that the in-class variability is greater. Machine

software is closer to human performance in somewhat simpler tasks like recognition, that

are controlled for rotation and lighting. Not many real comparisons have been made

between human and machine categorization, perhaps because it is common knowledge

that humans are better. A comparison study by Adler and Schuckers (2006) compared

automatic face recognition technologies available in 1999, 2001, 2003, 2005 and 2006

with human performance and showed that as automatic face detection improves, the

average human performance is no longer better than the machine performance. This is

impressive, yet we need to consider that some human performance is nevertheless better

than the best automatic face recognition, and the task at hand is answering 'same' or

'different' to pair of images from the NIST Mugshots Identification Database, where the

match is between images of the same person at different age points which may cause large

facial differences, see Figure 5 and [1] for more details. The field of face recognition and

classification is one of the better studied classes, on other classes (planes, motorbikes,

dogs, etc.) performance is usually poorer. As mentioned in the previous section, humans

do not make as many false positive errors as machine classifiers; this fact is important for

understanding the human visual system and for improving machine classification. In the

next section we take a closer view at some classification error dividing them into false

negative and false positive errors.

 10

Figure 5: Comparison of face recognition software and human performance from [1].

The black circles and triangles indicate the human female and male performance

respectively, and because they could respond on a scale of 1-5 conveying their confidence

in the match, an curve was drawn for each human by adjusting the threshold on their

confidence, the continues curves show the results for the highest performing software

available to the authors of [1] in the specified years, and the dotted line is an average of

the human performance, that is highly affected by the outliers. Most human performance

remained at the bottom left corner with the lowest error rates, and since where the human

curves do not completely outperform an automatic curve, the authors counted it as an

intermidiate performance (33.3% comparing to the 2006 condition), they got a good score

for the 2006 comparison. This may be challanged if the statistics where different.

2.4 False Negative Errors

When we examine the false negatives (misses) that current face classifiers make we can

often understand them (see Figure 4): many times misses occur in challenging face images

with long hair, high foreheads, glasses, or in images that contain non frontal faces, strong

shadows or noise. This seems intuitive and is consistent with human performance: infants

are known to sometimes burst in tears when seeing a familiar kin that has grown a beard or

put on new glasses. We can assume that large changes in a face that were not seen before

may not be encoded as part of the stored features and may cause unfamiliarity. These

errors are usually understandable; furthermore, algorithms have been suggested to reduce

the rate of false negatives by adding more training samples, selecting more features or

boosting the classifier [13]. The false positive errors, discussed in the next section, are

more interesting.

 11

2.5 False Positive Errors

False positives errors are those images that the classifier falsely detects as class but they

are not. They can be divided into two main types of errors, which I call multi-class errors

and single-class errors. As multi-class errors we consider those errors that are caused by

confusion between similar classes. For example, when trying to classify horses, we may

recognize some cows as horses. Since both classes are four legged animals, we consider

these errors reasonable; extending the classifier into a multi class classifier to learn the

similar class, or adding the similar class to the training samples labeled as non-class would

resolve this problem. Similar errors are also made by human infants before they learn the

name of the new class.

The single-class errors are those images that do not resemble the class and are nevertheless

classified as the class; see Figure 4 for some examples. Although the classifier shown has

a fairly good ROC curve, it makes unreasonable mistakes that a two-year old would not

make, failing to see for instance that a register is not a face. This problem of unreasonable

false alarm (compared with human judgment) is not easily avoided, it persists in many

different types of classifiers and when using different kind of features. Using a Naive

Bayes classifier that extracts SIFT features as in [7] the problem persists, examples with

their likelihood scores can be seen in Figure 6. In Figure 2 we show another algorithm,

Betaface [8] that detects faces by finding the eye region, and fails as well when provided

with queries of some non-class images that are hard for the fragments classifier.

The single-class false positives are interesting since it is clear they are unreasonable.

We continue to discuss some popular classification methods, their relative advantages and

shortcomings in section 3 . In Section 4 we use our observations to suggest and compare

possible general methods for potential improvements in performance of the classifiers.

 12

Figure 6: Cow Database Likelihood. On the top some examples of the likelihood scores

produced by a cow classifier based on SIFT features [7]. The false positives are again

irrelevant to the class of cows. On the bottom some examples of images that we consider

more relevant as false positives.

3 Existing Classification Methods

In this section I survey the main relevant classification methods, the features they use, and

how they combine features to reach a decision. The goal is to identify possible reasons for

failure and possible methods for improvement.

Classification is the process of determining a label iY for each sample iX for some

unknown function ii YXF =)(. In our discussion we focus on problems where the samples

are 2D images and the labels are binary class vs. non-class. Most supervised methods

work in a similar manner, as follows:

(i) Extract features that represent the sample data in some finite dimensional

space.

(ii) Select a subset of features that can be used to separate between class and non-

class and will not over fit the training data.

(iii) Combine the features found to a score that can predict or classify the sample

correctly.

 13

We begin by examining different types of features used and how a subset is selected in

section 3.1 . Then we continue to discuss how the features are combined to form a

decision in section 3.2 . In section 3.2.3 we view ensemble methods that combine

classifiers in order to improve performance. We also discuss online learning methods

in section 3.3 .

3.1 Feature Representation

Most state of the art classifiers represent an object or category using a set of local features

rather than a single template, and then combine the features to a single score. Classifiers

differ in the number of features they use, from a few to thousands, and in the type of

information used such as appearance, location, or statistics. The challenge is finding

feature representations that will represent intrinsic object variability within the class,

whilst maintaining invariance with respect to reasonable changes in translation, rotation,

scaling and illuminations. Features can be very simple or very complex; Vidal-Naquet and

Ullman discuss in [3,4] the idea of intermediate features. A classification algorithm can

use a small set of complex features combined in a simple way or an exhaustive set of

simple features combined in a very complex classifier and achieve similar performance. In

the following subsections we show a variety of features, from the fragment based

approach which uses intermediate complexity features combined in a simple statistical

method, to SVM method which combines simple features in a more complicated scheme.

3.1.1 Fragments

In [2, 3, 4] highly informative class image patches at different sizes are extracted to

represent the class. The patches, referred to as fragments are matched to images using the

Normalized Cross Correlation (NCC) method, although other similarity measures can

work as well. For each fragment, a threshold is determined, that maximizes the fragment’s

mutual information with the class variable, and the detected fragments are combined using

a generative Bayesian algorithm. In order for the fragment approach to be robust to scale,

and rotation, variable scale images can be added to the training set, or the features can be

extended to multi resolutions.

 14

3.1.2 Gabor features and wavelets

Some approaches create features that are themselves more resistent to illuminations,

rotations, scale and translations. The Gabor features [19] are one example. 2D Gabor filter

are defined by harmonic functions modulated by a gaussian distribution. These are applied

to any image using convolution to obtain a response. The Gabor features are closely

related to processes in the mammalian primary visual cortex, and have been showed to

approximate the response of simple cells in the visual cortex.

3.1.3 SIFT

Another approach that is resistant to transformations and rotations has been suggested by

D. Lowe and is referred to as SIFT - Scale Invariant Feature Transform [7]. This approach

uses complex keypoint descriptors as features applied to images preprocessed by a

Difference of Gaussian filter at multiple resolutions. The features are created by first

computing the gradient magnitude and orientation at each image sample point in a region

around the keypoint location; these gradients are then weighted by a Gaussian window,

and accumulated into orientation histograms summarizing the contents over cubic sub

regions of a chosen size. The final feature is a vector the size of the sub regions with

information about the orientation and magnitude at multiple resolutions.

3.1.4 Improving Features - Hierarchies and Semantics

Features of all types can be improved using various methods. Examining methods to

generate more precise features, we encounter the hierarchical fragments [18], which are

more complex features extracted by decomposing image fragments using a probabilistic

hierarchical model and combining their inner informative subparts. The hierarchical

decomposition generates a more robust fragment, allowing some flexibility between the

fragment parts and defining the more important subparts of each fragment. Another way to

increase the effectiveness of a fragment feature is to add an inherent variability to the

feature, as in semantic fragments [17]. In this scheme, 'anchors', stable image parts in the

training set, predict a geometric model and using this model other more variable parts and

their semantic brothers are detected. The fragments used for classification can now be

 15

semantic fragments with variable appearance (for example a mouth with teeth, smiling or

frowning) creating a more resistant representation and improving performance.

3.1.5 Constellation Models

In the constellation model, Fergus et al. [10] models variability not only in appearance but

also in the shape of objects. The features are image parts reduced to the first k (typically

10-15) principle components of the image patch, but combined not only using a

probabilistic appearance model but also considering shape, occlusions and scale. In this

model the features’ relative location is used so that the shape and scale are represented by

a joint Gaussian density of the locations of features. Another constellation method applied

to face detection proposed in [20] uses gabor-filter based complex statistical features and

adds a phase of registration using a transformation / constellation of three landmark

features followed by an appearance verification stage that gives a probabilistic score to the

geometrical model of the detected features.

3.1.6 Satellites for Similar Classes

We momentarily extend our discussion, limited to single class classification, to similar

classes to survey satellite features, as we will refer to them later in section 4.1.6 . When

necessary to differentiate between two similar classes, the problem becomes harder.

Learning features that differentiate between faces and non-faces is different from learning

the difference between women and men faces. Many of the previously discussed

approaches will perform better on the class/non-class problem and need some extension in

order to solve the similar class problems. However there are methods that deal specifically

with this problem, we consider the satellite fragments classifier [16] by B. Epshtein.

Assuming that the features that differentiate between similar classes are smaller and more

localized, the typical method of finding high mutual information fragments will not

succeed since small features can be found in many image locations. In the satellite

approach, the classifier finds basic features that are shared by both classes in order to

generate a geometric model and find more specific and localized satellite features that will

represent the small differences between the similar classes, For example, in the case of

 16

men and women, an earring on the ear is a highly informative feature or the existence of

facial hair above the lip is another informative feature.

3.2 Learning and Classification

Once the type of features to use has been determined and the data is represented using

these features, learning is performed to generate a classifier that can classify unseen

examples (referred to as a testing set). Classification methods exist for unsupervised

learning where the training data is not labeled. However, we will focus on the family of

supervised classifiers that have at their dispose labeled training data. When given some

representation of the data, classifiers select a smaller set of representative features that will

not over-fit the training data and will generalize well to new instances of the class. The

features are combined into, usually in a none rigid ways or using a probabilistic method, to

generate a single score that determines the class labels and sometimes a predicted value in

regression problems.

Some authors [11] separate the feature selection methods into filters and wrappers. Filter

methods are those methods that select features without considering the specific

classification method that is used, or considering it but not directly. Wrapper methods rely

on the performance of the classifier on the training set to evaluate the quality of the

features and to determine which features to select. The later are prone to over-fitting the

training set. We start by describing the filter method used by the fragment based approach

as in [2,3]. We then continue to describe SVM which is another filter method, and in the

next section we describe some ensemble methods, among which AdaBoost functions as a

wrapper avoiding over-fitting in a different way.

3.2.1 Max-Min Selection and Bayesian Classification

In the fragment classification described in [2] ,[3], features are selected by a greedy search

to maximize their mutual information (for a detailed description see appendix 8.1). In

short, the algorithm has a pool of fragments or image patches that have a similarity to all

training samples; typically this is the maximum normalized cross correlation with the

training sample. The Class variable C has binary value 0 or 1, representing non-class and

 17

class, respectively. Each fragment f is changed to a binary feature using some threshold θ

which maximizes the mutual information between the fragment and the class.

A smoother solution to the naïve Bayes decision is a soft naïve Bayes decision that models

probabilistically the similarity expected allowing usage of the similarity measurement,

thus explicitly avoiding information losses by changing the fragments into binary features.

The soft naïve Bayes outperforms the simpler naïve Bayes. Figure 7 shows a comparison

of the two.

Figure 7: Comparing Naive Bayes with a soft Naive Bayes. The EER when using up to

200 fragments on a faces classification task and combining them as binary features using

simple naive Bayes or using a softer version that uses a gaussian distribution on the

similarity strength.

3.2.2 SVM

SVM or Support Vector Machines is sometimes considered the best performance

classification method today, but other methods perform close to SVM [21]. Given a set of

features and class labels, support vector machines minimize the empirical error while

maximizing the geometrical margin; they are remarkably resistant to over-fitting. SVM

uses kernels to map data into a high dimensional space. Some common kernels are linear,

radial, or polynomial kernels, but others can be defined as well. The decision surface is

defined by support vectors: some mapped training samples that define the margin as well

as possible. Using SVM is equivalent to solving a quadratic minimization problem with

 18

linear constraints; there are many works of optimizing SVM algorithms [22]. SVM works

close to other methods that maximize the margin. One known method is boosting, a type

of ensemble algorithm which we discuss in the next section.

3.2.3 Ensemble Methods

Ensemble methods are methods that combine several classifiers into a single classifier

with better performance. They can use various classifiers like Bayesian classifiers, neural

networks, decision trees or others as the basic classifiers they combine [23]. We will

discuss shortly bagging and then boosting which we will elaborate on since it will be used

later in our work.

3.2.4 3.2.3.1 Bagging

In bagging, a set of classifiers is trained on the training set multiple times by re-sampling

from the training set with repetitions and training each time a different classifier, with

different parameters according to the random training set selected [23]. The scores are

then combined into a single classifier by averaging over the scores or by voting - labeling

according to the class that more classifiers voted for. Bagging creates a more stable

algorithm by averaging while reusing the same data.

3.2.5 3.2.3.2 Boosting

Boosting is a general term that refers to combining several rough classifiers into a single

very accurate classifier with better performance. Many boosting algorithms have been

suggested, one common method is AdaBoost [13]. AdaBoost linearly combines weak

hypothesis h by weighting the training samples and concentrating on the errors. AdaBoost

is described in detail in appendix Error! Reference source not found..

AdaBoost has a theoretical bound on the generalization error. However, empirically it is

known to drive down the generalization error long after the training error has reached zero,

contradicting the spirit of the bound and avoiding over-fitting. Many explanations have

been offered to explain this behavior [24], [25]. The idea is that similar to SVM, AdaBoost

effectively increases the margin on the training set which results in an improved bound on

the generalization error. Another type of combining features which we will refer to in our

work is the cascade classifier described in the next section.

 19

3.2.6 3.2.3.3 Cascades

In the cascade method suggested by Viola and Jones [5] complex classifiers are combined

in a computationally efficient way. The classifiers are applied in successive stages of a

cascade allowing the initial fast stages to filter out many sample images that are non-class

with high probability. Since images that are rejected in the initial stages will not be

processed again, the cascade uses complex classifiers and chooses a threshold that can

ensure a very low false negative rate. Cascades allow for rapid processing and applying

computationally demanding classifiers that can achieve very low error rates without

paying the cost of low speed performance. The method also has extensions, for example,

in [6] a method that deals with asymmetric data sets is suggested. We will return later to

discuss the advantages of the cascades in the Section 5 . Until now we described batch

classifiers we turn now to discuss classification in an online setting.

3.3 Online Classification

Online classification methods consider the problems that arise when dealing with real

world problems. Many times the training set is too large to process directly or not

available when initially learning. A good classifier is one that can adapt easily when more

data is available, use additional features that were not available when learning initiated,

combine additional data into its decision scheme simply, use a small amount of memory

when learning, learn from single examples as they arrive or from blocks of examples and

all this while achieving performance that is close to that of a batch algorithm that has all

the samples and the memory available at all times. Online algorithms have been suggested

for many classification schemes, for the fragment based approach [14], and for boosting

[12]. These methods keep in memory the minimum necessary to explain samples seen so

far and extract features and statistics out of incoming samples. These methods are

encouraging when considering that many times errors are caused by new class

appearances. The possibility to easily train a classifier on new samples allows reaching

ever lower error rates. Another advantage is that the online scheme seems closer to how

human beings learn. In the next section we discuss our ideas for improving classification.

 20

4 Improving Classification

In previous sections we discussed current classification schemes, and the quality and rate

of their errors. In this section we discuss the role of a number of possible sources to the

limitations of current classifiers and continue to propose some ways to improve

classification. The ideas for improvement can be viewed in two main contexts (Figure 8):

(i) improving classification by learning more from the available training data, (ii) since the

training data may be an inherent limitation to the performance and a major difference

between humans and machines, we propose ways of dealing with ever increasing training

data and class features not only for learning, but also for achieving accurate and fast

response times considering these limits. In Section 4.1 we discuss the first possibility, and

in Section 4.2 we demonstrate the training set limit.

Figure 8: Two main learning paths.

4.1 Learning More from the Training Set

In this section we discuss limitations of current classifiers and ask: are we extracting all

we can from the training set? Are the feature detectors good enough? Are the classifiers

combining the features in the best possible way? Is there more information that is

overlooked, the geometry for example? We begin by discussing possibilities to improve

classification, and then propose three different schemes that try to exhaust the training set

data in the quest to achieve better performance. In current classification schemes decision

is often reached based on restricted and partial information, finding a small number of

local fragments which are far from covering the object, and may have a too limited view

of the object. Figure 9 demonstrates this. To avoid this limitation we introduce the

perspective fragments that try to add context to each fragment in section 4.1.4 . The anti

Improving

Classification

4.1. Learning More

from the Training Set

4.2. Increasing the

Training Set

 21

fragments in Section 4.1.5 try to generate more accurate features by learning more from

the false positive errors the classifier makes and defining the similarity to a fragment

better. In Section 4.1.6 the satellite fragments are introduced as a second stage of

classification. The approach uses a first quick stage as a mean of extracting better

localized features for the second stage.

4.1.1 Improving the Similarity Measure

Does the type of feature make a difference? Some methods excel on some problem sets

but are outperformed by other methods on other sets. Can a human mistake an arbitrary

object for a face when given the features the classifier is using? Figure 9 shows the

fragment features detected in different images by the Normalized Cross Correlation (NCC)

similarity measure. Do the detected features in the false positives seem sufficient to

determine the image is a face? Do the detected features in the false negatives seem

insufficient to determine that the image is not a face? One simple way to add more

information to the classifier is to use more features that cover the image more thoroughly.

This indeed helps but there is a limit to adding features as well. No matter how many

features are added the error rate remains above 2%, as Figure 7. There are other methods

to add information to the features which can be considered, but none make the errors

disappear.

 22

Figure 9: Detected features. On the top row - features found in non-class images that

were classified as class. On the bottom row – we show features detected in class images

that were ultimately rejected by the classifier. The eye fragments that are highly

informative are missing, but would you fail to classify these images?

In Figure 10 we show the same features detected in the non-class images shown in Figure

9, but with the full image. Are the detected features too dissimilar from the fragments they

represent? Note that when the full image is exposed, it is more prominent that the features

detected are not very similar. One argument is that the similarity measure of the features is

not good enough. However changing the feature similarity measure from Normalized

Cross Correlation to SIFT [7], for example, changes the false positives a bit but doesn’t

change the problem (see Figure 6).

Looking into results of different methods like SIFT, Constellations, and others, we see that

the error rate is approximately similar once it reaches the levels below 5%. All similarity

measures have their shortcomings. The problem is inherent and may be connected to the

reduction of the image dimensions, the locality of the features, the combination of the

features into a single score and the size of the training set. In the following sections we

propose some ideas of how the similarity can be changed to improve the final

classification. Before that we consider how the features are combined into a score.

Figure 10: Detected Features in Context. The top row shows the features used for

classification. The bottom row shows the features found in the misclassified images using

the NCC similarity measure; the border color marks which feature was detected. Is the

similarity sufficient? When seeing the 'full picture' the detected fragments seem quite

wrong.

 23

4.1.2 Improving the Combination of Features into a Score

The different classifiers we surveyed have been compared on many tasks and there is no

algorithm that achieves better performance on all tasks and all settings; each task and

algorithm need to be tailored to the necessary restrictions [23]. In a paper by Fleuret [11],

empirical comparisons of face classification show that max-min feature selection (also

referred to as CMIM - Conditional Mutual Information Maximization criterion) combined

with SVM gives the best performance, a test error of 1.12%; however AdaBoost and max-

min with Naive Bayesian methods are not very far behind with test errors of 1.45% and

1.52%, respectively. For our purposes, the main observation is that the basic difficulty of

the unreasonable errors remains when varying the classification method or the feature

selection method. We ran some comparisons on our data sets using fragments as binary

features and observed similar results to Fleuret’s. The work described in the following

sections, does not try to create a new classification scheme, but rather combine existing

classification methods to achieve better performance.

4.1.3 Using the Configuration to Improve Classification

Most classifiers we studied search for some finite set of features in a sample image and

combine them into a score. Few, of which the constellation model by Fergus [10] is one,

also generate some value for the configuration or relative location of the detected features.

Although the configuration is another source of information, and in many false positive

images the configuration is incorrect and can be used to reject the image, there are also

false positives that have a reasonable configuration, and on the other hand, there is a

variability in the configurations in the class images (see Figure 11). Since we assume the

location is a good feature, and can add to the simple similarity, we tested this idea using

SVM. We provided the SVM classifier with a vector of features that was composed from

similarity and location of possible fragments, rather than just the similarity. We show a

sample result in Figure 11 that does not display a large advantage to the location

information. We did not proceed to check this direction, as it is similar in a way to Fergus'

work [10]. We do believe there are other ways to integrate the location information into a

classifier, and that it is useful to add information of more than just similarity. The

receptive field of cells in visual brain areas is definitely an important component in the

 24

processes that help the human visual perception achieve its goals. We leave this for future

work section, and continue to discuss some competing ideas that we attempted.

4.1.4 Perspective Fragments

In this subsection I describe briefly the motivation for the perspective fragments and some

experiments.

When taking a look at the fragments found in false alarm images it seems that the detected

patches, when taken out of the context of the full image, may seem similar to the

fragments (Figure 12 shows some examples). However, expanding the region in the

vicinity of the detected fragment often reveals that it is not embedded in the expected local

context. Therefore, the idea we tested was to add a ‘perspective’ to the fragments which

adds some information that depends on the local context.

Figure 11: Using the Configuration. On the bottom we show 7 fragments used in this

test. The left image shows some example of configurations detected in class and in non-

class images. The configurations in the class are with high variability. On the right we

compare using the fragment detection only for classification to using the fragment

location. The data was combined here using an SVM linear classifier.

 25

Figure 12: Features detected out of perspective. When looking at the fragments

detected out of their image context the similarity is much more prominent to the naked

eye.

Perspective fragments are fragments that "put things in perspective". The algorithm tries to

find for each feature, a larger encompassing feature that would give a context for the

smaller fragment allowing verification of the smaller feature. For example, we verify a

patch is really an eye by looking for the 'nose and eye' larger fragment with a lower

threshold. Since searching for pairs of highly informative features is inefficient for

combinatory reasons, we searched for informative features and then tried to improve them

by finding a perspective for them. An extension, considering that sometimes the fragment

itself is large, and may be a good perspective of some smaller feature inside, is to look for

inner as well as outer perspective. For example, to verify an eye fragment is really an eye,

find a smaller inner fragment with the iris. Figure 13 shows some fragment pairs.

The perspective fragments achieve better performance than normal fragments (see Figure

14). In the next section we present another method to improve performance using a

different scheme - the anti-fragments.

 26

Figure 13: Perspective Fragment Pairs.

Figure 14: Perspective Fragments ROC

4.1.5 Anti-Fragments

We use the term ‘anti-fragments’ for features which are used as counter-evidence for the

presence of a class, as opposed to supporting it. In this section we describe some of the

motivation, biological and conceptual, for the anti-fragments idea, and then an algorithm

for extracting and using them. We then show some results on the class of motorbikes.

4.1.5.1 Motivation and Algorithm

In most classification schemes, the features used are features that are found with high

probability in the class and with less probability in the non-class. This is usually the case,

since the possibilities for non-class are endless. However, even the best features are

detected sometimes in non-class images in objects that resemble the feature, but are

known to be very different from the feature. For example, a feature that is the corner of a

motorbike wheel can be sometimes detected at the corner of a coffee mug. The round

 27

element of the wheel is indeed similar; however, the coffee mug has a handle that

distinguishes it from the wheel. Anti-fragments try to define the positive features, by using

the errors made when the fragments are detected in the non-class images. For every

fragment, we define a set of anti-patches that are combined with the fragment as a logical

’not’, which can override the detection of the positive fragment. Figure 15 illustrates

schematically what an anti-fragment is. A 'normal' positive fragment is a feature with a

threshold, which means that all points above the threshold will be considered as detected

instances of the feature. Adding inhibition patches with their own threshold can be viewed

as creating a more flexible surrounding depending on the fragment as in Figure 15(b).

Thus an anti-fragment is one that has a close similarity measure to some positive class

feature and is far from similar from those non-class patches that are similar to the

fragment. The algorithm uses false positive detections to generate the inhibition patches

for a positive fragment and is detailed in appendix 8.3 ; we continue to show some results.

(a) (b) (c)

Figure 15: Illustrating an Anti-Fragment. (a) Depicts a normal fragment with some

threshold, any patch that falls in the gray region is considered similar to the fragment. (b)

Illustrates how the gray ’accepting’ region is changed into some random, and possibly

more accurate shape using anti-patches. (c) Shows the anti-patches (in red) that created the

anti-fragment.

4.1.5.2 Experiment and Results

We run tests of the anti-fragments approach on the class of motorbikes. The motorbikes

database is a hard data sets. It includes 800 images of motorbikes of size 220x180 pixels

mostly cropped and scaled, and 500 non-class images of similar dimensions. The best

fragments selected for the motorbikes are usually the wheels, since there is large class

variability in all other details like chair, exhaust pipe, etc. This, of course, would not be the

 28

case if we were learning to differentiate motorbikes from cars, but is the case in the

described setting. Figure 16 shows the variability in the class. Some anti-fragments

selected can be seen in Figure 17. Using the anti-fragments we found that we could get an

improvement. However, a drawback is the over fitting to the non-class samples which

means the classifier may not generalize too well. We show more results in Figure 18.

Figure 16: Motor Bike Database Variability. Some examples of different motorbikes in

the database

Figure 17: Sample Anti-Fragments from the Motor Bike database. Each line is an

anti-fragment, the patches on the left are the fragment and the patches to right with the red

border are the inhibitory anti-patches

 29

Figure 18: Anti Fragments Results. The ROC curves comparing performance on the

motorbike task of normal fragments (red) to anti-fragments (blue). Top right is in the

training set, top left is in the test set, and the bottom is the EER in the test set when adding

fragments. We show the minimum EER and its location for each scheme.

The motivation for anti-fragments is derived from inhibition in the human visual system.

The current scheme is implemented as a rigid ’all or nothing’ inhibition, but smoother

variations of inhibition can also be tested. Another attempt to improve classification is the

satellite fragments as a second stage described in the next section.

4.1.6 Satellite Fragments as a Second Stage

Considering the false positives when classifying with a small set of fragments, we believe

that searching for more specific features, that are relevant to the class, may help.

4.1.6.1 Algorithm and Motivation

The more specific features can rely on the information found at the initial stage, following

the work of Epshtein and Ullman [16]. These additional features were chosen to be

validation satellites. Similar to [16] the satellites are dependant on the detection of the

 30

basic features, and are used only for images that are classified correctly in the first stage.

For example, Figure 19 shows a detected patch of forehead and a patch of nose in two

images, one is a real face and the other is not. The false image can be rejected if additional

support at specific locations would be sought, since it is missing crucial parts - for

example an eye below the forehead and adjacent to the nose.

Figure 19: unreasonable false positives. Using the available features the following two

images were classified as faces. If we could add a validation step to validate that below the

forehead and a bit to the right of the nose there needs to be an eye, we could avoid making

the mistake of classifying the hands as a face.

Similar to the satellite approach, a probabilistic geometric model is used that enables

extracting more specific features (like the iris of the eye), that without a specific location

would not be meaningful. Since the satellite algorithm works for similar classes, it was

adapted for the general classification problem, a detailed description of the algorithm is

provided in appendix 8.4 . In a sense the satellites are used to validate the initial

classification.

4.1.6.2 Experiment and Results

The following results are from a database of eastern and western faces. The faces data set

includes 1000 faces of size approximately 150x200 pixels roughly the same scale and

orientation. In Figure 20 the model with the anchor fragments can be seen. Figure 21

shows the best satellite locations. It is interesting to note that the validation locations are

selected in the eyes, mouth and nose ridge locations which are prominent and localized

 31

features of the class. Each satellite was composed of a number of semantically equivalent

fragments, some examples are shown in Figure 22.

Figure 20: The Model Image. The white rectangles are the anchor fragments used for the

first stage and for computing the model.

Figure 21: Validation Satellites. The images show the best satellites selected for

validation by order.

 32

Figure 22: Satellite Semantics. Each row is a validation satellite with all the appearances

selected. From top to bottom we have: end of left eye, right eyebrow, part of right eye

close to nose, nose ridge, right side of mouth, nostrils.

Figure 23: ROC curve comparing satellite classification. Validation here refers to

applying the stages one after the other in a cascade.

In the ROCs displayed in Figure 23 an improvement for the satellites at low false alarm

rates can be seen. However, since the satellite fragments are composed of many fragments,

the naive comparison to only the anchor fragments is not enough. When comparing with

many more fragments (approximately 7 for each satellite) the validation scheme looses its

advantage. Moreover, a shortcoming of the scheme is that the initial phase uses a

geometric model that has a large computational cost which also discourages using more

than 7 fragments as anchors since the computational cost grows exponentially. However,

 33

the idea of building a validation phase and using the data from previous stages remains as

inspiration and will be discussed thoroughly in the next section. We now turn to discussing

classification when the training set is not limited.

4.2 Classifying in the Setting of a Growing Training Set

In this section we focus on the notion that humans' superior classification performance is

due in large to the fact that they continually learn over their life span. Unlike current

computer systems, it is likely that humans have mechanisms that achieve quick and

precise categorization in the framework of an ever growing training set. From the former

part of our work, we conclude that any classification system that wishes to achieve human-

level results at reasonable response rates needs to apply more elaborated computations to a

part of the data, and to learn online from new examples. In section 4.2.1 below we show

that adding training samples and enhancing the class representation by adding more

features helps, as expected, to further lower the error rate. We conclude that the main

avenue to improve performance to a human level is based primarily not on improving the

learning from a fixed, small data set, but to continuously learn from a large data set, and to

continuously extract useful features from the new examples. The main problems that arise

are therefore, first, the ability to learn from a constantly growing set of samples, and

second, to classify efficiently using a very rich set of features. We deal with these

problems in subsequent sections.

4.2.1 The Training set Limit

As shown in the first part of this section, no matter how good the classifier is, when

generalizing, the training set places a limit on the performance. Do humans have a limited

set to learn from? Not really, and even though after a certain age, no one will tell a child,

for example, that a pincher is a dog and not a mouse, humans still get many clues as to the

fact that what they observe is a dog, even if they don’t initially recognize it as a dog. Can

the training set be one of the main differences between human classification performance

and machine classification? It has been shown [23] that the training set theoretically limits

the performance of any classifier. If this is the case, then perhaps the quest for human-

 34

level performance should simulate a continuously growing training set, using appropriate

online algorithms.

In this section we verify the effect of the training set size, by using fragments selected by

either the max-min algorithm or by AdaBoost. As expected, adding images to the training

set gives rise to a monotonic improvement in the learning and better performance.

Additionally, when continuously augmenting the features selected as the training set

grows, the performance improves as well, compared with using a fixed number of features

but improving the selection over time. We can assume that the class representation

therefore is enriched as the person gains experience with the class in question. We first

describe some empirical tests and in the next section we suggest validation and online

learning as means to cope with the training set limit.

4.2.1.1 Training set Experiments

In this experiment we tested the effect of the training set size on the classification

performance. We ran the experiment on a database of horse images; we had 323 cropped

horses in different poses and 450 non horse images of patterns and various scenes. We

used max-min to select a set of up to 100 fragments that maximize the mutual information

between the fragment and the class labels. At each stage we increased the number of

images used for training. The test set was kept constant. In the results below, we used 40%

of the images for the test set, and the other 60% were grouped randomly and added in six

parts. We tested the effect of the training set size, as well as the maximal number of

fragments extracted during training. For each training set, we added fragments and tested

for the smallest equal error rate (EER) on the test set. The tests showed that the

performance improves monotonically with the size of the training set, provided that the

scheme is also allowed to increase the number of fragments used. We show the results

averaged over 5 random training sets, and also a single representative run to see the

number of images and fragments that the classifier learned from. When the pool of

fragment is kept small, the effect of adding more training set images is limited, since the

ability to select features that differentiate between the class and the non-class is limited by

the set of features available at each step (Figure 24). When we allow the available

fragment set to grow as the training set grows, the EER drops at each step, as shown in

 35

Figure 25. Both the size of the pool that the features are selected from, and the final total

number of fragments, increased the final performance.

We tested whether the effect of the additional train samples may be only due to the

additional fragments, and not from the additional train images by themselves, by using a

very large set of fragments (10,000) from the start, and keeping it constant at each step,

see Figure 26. The experiments showed that the increase in the training set has an effect

when the number of fragments is large and fixed.

We also tested the same scheme using AdaBoost, where each possible fragment was

considered a weak classifier. The results were quite similar, except that AdaBoost, being a

wrapper type classifier [15] had a zero error rate on the training set and a lower error rate

on the test set. The effect of adding train samples and possible features remained the same

as when using Naïve Bayes, see Figure 27.

 We conclude that the error declines as a function of using more training set samples, and

also as a function of having a larger pool of fragments to choose from, and using an

increased number of fragments as the training set increases. We suggest that a method that

attempts to imitate the human brain should be an online method, as the human brain

continuously meets new examples and probably continuously improves class

representations. We next turn to discuss validation and online learning; two methods that

may help improve performance further, in the context of a growing set of features and a

growing training set respectively.

Figure 24: Increasing the training set size. As we increase the training set size, but limit

the initial pool of features available for the classifier (around 2000 fragments) we can

 36

hardly see any improvement. Averaging over 5 runs on the left, on the right we show

single runs.

Figure 25: Increasing the training set and the fragment pool size. Naive Bayes

classifier, as the training set grows, so does the pool of fragments. In (a) we can see the

average EER decreases. In (b) we can see the results of single runs.

Figure 26: Increasing the training set with a large pool of fragments. The increase in

performance is not only due to the large pool of fragments, since if we use a large pool of

fragment to begin with, adding training set images improves the performance as well.

 37

Figure 27: Increasing the training set and the fragment pool using AdaBoost. This

shows that when the classifier used is AdaBoost the final performance is better, yet the

effect of using more fragments and more train samples remains.

5 Cascades in Classification

In the previous section we concluded that to achieve high performance, the learning state

should include a large training set and be allowed to increase the number of features used

in classification. This raises two main requirements from the classification scheme. First,

to deal with a large number of training examples. The natural approach is to use on-line

learning, which continues to learn from new examples, rather than use a limited training

set in an initial training phase. Second, because the feature size grows, the computational

load increases. To deal with this problem we develop multi-stage schemes. In such

schemes, the number of features used in the first stage is limited, and additional features

are applied only to a limited number of images, based on the results of previous stages.

We developed for this purpose two alternative multi-stage methods. The first is called a 3-

way cascade. This is an extension of standard 2-way cascades used in the past and will be

described in section 5.1 . The second method is called ‘configuration cascade’ and will be

discussed in section 5.2 . It identifies specific feature configurations which are the source

of errors and deals with them in subsequent stages.

 38

5.1 Three-Way Cascades

Humans tend to make quick responses in physiological experiments to typical class

instances, but typically show a longer response as well as higher error rate to harder

examples. One hypothesis is that difficult instances require more processing than simple

ones. If we consider the fragment approach, we can see that for horses, a ten-fragment

classifier already achieves pretty good performance, at a cost of searching for only ten

fragments. The benefit of adding fragments is initially very large, whereas the benefit of

adding more fragments when the classifier error is already low is relatively low, and the

cost (the number of fragments to search) becomes much higher. To deal with this

difficulty we suggest classifying in stages, similar to previous cascade schemes, but

extending the approach to a so-called 3-way cascade. In a 2-way cascade, the first stage is

used only to reject some of the inputs. We use the first stage to either reject or accept some

of the input.

To explain the use of a 3-way cascade, we define below a strong classifier as a classifier

whose errors are close to the margin, Figure 28 shows schematically what a strong

classifier is, and Figure 29 shows a sample response for a strong classifier.

(a) (b) (c)

Figure 28: The Strong Classifier Concept. The definition of a strong classifier is

schematically shown here. In (a) we see a strong classifier, where the errors are close to

the border. In (b) we see a classifier that makes the same number of errors but is not a

strong classifier, since the errors are not close to the border; (c) shows a weak classifier.

 39

Figure 29: Strong Classifier Response. The red line is the response of the classifier

sorted from highest to lowest, the top part is in the training set and the bottom is in the test

set. The blue line is 1 when the image is class and -1 when it is non-class so the vertical

lines are the errors. The errors are distributed around the classifiers medium response, and

we can see that the classifier is a strong classifier as there are no errors in the region of

highest and lowest responses.

The three-way cascade classifier works in stages similar to a standard 2-way cascade [5].

At each stage a strong classifier is applied to all samples that require further processing.

Initially, all images require processing, the improvement is that if the classifier we use is a

strong classifier, those samples that had a sufficiently high response are classified as class

and will not be processed in additional stages, and those samples that had a very low

response will be classified as non-class and will also not require any more processing.

Only those images that are in the middle zone in terms of response strength will be further

processed in the next stage.

In some cases the three way cascade scheme, not only enables cutting computational costs

but also allows reaching lower error rates. We discussed in previous section that to

improve the performance of a classifier the classifier needs to learn more and to process

many features. Cascades allow adding more features online, while keeping reasonable

computation cost on the average. The three-way cascade scheme may achieve better

