

Thesis for the degree

Doctor of Philosophy

By

Michal Gordon (Kiwkowitz)

Advisor:
Prof. David Harel

December 2012

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

ממשקים טבעיים ואינטראקטיביים לתכנות
 התנהגותי

Natural and Interactive Interfaces for
Behavioral Programming

 עבודת גמר (תזה) לתואר

 דוקטור לפילוסופיה

 מאת

 מיכל גורדון (קיבקוביץ')

 טבת תשע"ג

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

:המנח
 פרופ' דוד הראל

2

Acknowledgments

I would like to thank my advisor Prof. David Harel, who has been an ideal

teacher. He allowed me to explore for myself, while guiding me wisely on the

crossroads. I have learned so much from him during this PhD, how to write,

how to select which ideas to pursue, how to approach the harder problems,

and so much more. I feel privileged to have worked with him, and I thank

him for sharing his time, patience and wisdom.

I would like to thank colleagues and group members for collaborations and

discussions over the years: Assaf Marron, Shahar Maoz, Naamah Bloch, Guy

Katz, Avital Sadot, Dana Sherman, Yaki Setty, Yaniv Sa’ar, Guy Weiner,

Smadar Szekely, Yaarit Natan, Daniel Barkan, and Guy Weiss. Special

thanks to Shahar Maoz and Assaf Marron.

I thank the members of my committee, Prof. Amiram Yehudai and Prof.

David Peleg, for fruitful comments and discussions. Special thanks to Ami-

ram for helpful comments and suggestions over the years and for his enthu-

siasm for my research.

I would like to thank to thank my parents for their encouragement and

support. I would like to thank my husband, Goren, my love, my partner,

my friend, who always took part in my work and was an inspiration and

a motivation. I doubt if I would have been able to interweave a PhD and

motherhood if not for his support. To Noga and Doron, I hope they grow in

a world with many more possibilities, a world where they can reach the stars

and beyond.

3

4

Abstract

This thesis describes the development of intelligent interfaces for scenario-

based programming, specifically for the language of live sequence charts

(LSC). The main topic presents natural language play-in (NL-play-in), a

method that supports creating LSCs by writing structured natural language

requirements. The method transforms text into the visual formalism of LSCs

using a context-free-grammar and additional information used for disam-

biguation of the writer’s intentions, including possible interaction with the

writer. A second topic described, is show & tell, a combination of NL-play-in

with user interaction using a graphical user interface (GUI) of the system,

extending play-in. In play-in a GUI of the system being programmed is pro-

vided for carrying out the actual act of programming behaviorally. Show &

tell merges, naturally and intuitively, this ability with the ability to specify

behavior textually in natural language. It interprets the writer’s interaction

in the context of the textual requirements.

Finally, we also present a preliminary evaluation of the interfaces, and

additional methods developed for scenario-based programming and its gen-

eralization, behavioral programming. These include ideas for navigation and

comprehension for scenario-based programs.

On the whole, this thesis deals with creating more natural ways to pro-

gram using scenario-based programming, making real world programming

accessible to a larger community.

5

6

Contents

1 Introduction 9

2 Specifying Behavior in Natural Language 11

3 Show & Tell, or Combining NL and Interactive Play-In 14

4 Evaluation of the Various Interfaces for LSC 16

5 Semantic Navigation of LSC 19

6 Papers 21

7 Discussion 87

7.1 Specifying behavior in natural language 87

7.1.1 Requirements engineering 87

7.1.2 Related executable langauges 87

7.1.3 Preference learning . 88

7.1.4 Extending the grammar 88

7.2 Show & tell . 89

7.2.1 Related work . 89

7.2.2 Extending the interfaces 89

7.2.3 Speech recognition . 90

7.2.4 Show & tell as a general interface 90

7.3 Evaluation . 90

7.4 Semantic navigation of LSC 91

8 Work in Progress 92

8.1 Auto generation of interaction fragments 92

7

List of Abbreviations

BP Behavioral programming
CASE computer aided software engineering
CNL Controlled natural language
GUI Graphical user interface
HCI Human computer interface
LSC Live sequence chart
MSC Message sequence chart
NL Natural language
NLP Natural language processing
OO Object oriented
PBD Programming by demonstration
SD Sequence diagrams
UML Unified modeling language

8

1 Introduction

Behavioral programming (BP) [23] is a programming paradigm in which

system behavior is described by independent modules aligned with scenar-

ios. The language of live sequence charts (LSC) [7], proposed in 1999, is

a visual formalism that extends message sequence charts (MSC) [25] with

multimodality, and it constituted the first executable implementation of the

paradigm. The present thesis continues along the lines of play-in [22, 21],

proposed in 2003 for creating LSCs. In play-in, a graphical user interface

(GUI) of the system being programmed is provided for carrying out the ac-

tual act of programming behaviorally.

In the main part of the thesis we propose advanced interfaces for play-

ing in behavior. First, we introduce a controlled natural language (NL)

interface for LSC [12], with a dialog system to resolve natural language am-

biguities. The user is requested to clarify and answer questions when the

natural language is not clear. The result is a natural language interface for

specifying fully executable programs, called NL-play-in. We then extend this

interface with show & tell [14], a combination of play-in, and the natural lan-

guage interface. Show & tell merges, naturally and intuitively, the ability to

demonstrate parts of the behavior interactively and the ability to specify

behavior textually in natural language. We also report on preliminary user

evaluation of these interfaces [15], which test the interfaces on programmers.

Additional capabilities are developed to navigate and comprehend scenarios

[13, 8] and to address some of the challenges arising from the new behavioral

programming paradigm.

This thesis is organized as follows. Sections 2-3 present the core of the

thesis: the natural language interface for LSC in Section 2; and show &

tell, a combination of the NL interface with the original play-in, in Section

3. Section 4 reports on the comparisons and user evaluations performed on

the new interfaces. In Section 5 discusses a semantic navigation method for

LSC, developed for comprehension of LSCs. The papers and details of each

9

topic, appear in Section 6, and Section 7 includes a discussion for each of the

topics in the thesis and possible future work. In Section 8 we describe work

in progress.

10

2 Specifying Behavior in Natural Language

The formal language of live sequence charts (LSC) [7] is similar to message

sequence charts (MSC) [25] or UML sequence diagrams (SD) [34] and is

visual in nature. Therefore, traditionally, the charts in the language can be

created by drawing or by drag-&-drop of elements. Additionally, charts can

be created by play-in, a method that allows manipulating a graphical user

interface (GUI) of the system being described, in order to demonstrate (or

“play-in”) events that occur in a scenario [22]. These events are added to

the diagram and become part of the programmed behavior. However, the

creation process of play-in is not always easy, since it requires finding many

buttons, opening dialogs, etc. For this reason, we have created a controlled

natural language interface, named NL-play-in for generating LSC diagrams,

detailed in [12].

The NL interface provides the ability to write a natural language descrip-

tion of the scenario, that is translated automatically into an appropriate LSC.

For example, the sentence “when the user clicks the button, the display color

changes to yellow” yields the LSC shown in Figure 1 (a). Figure 1 (b) shows

an LSC created for a more complex sentence that includes a forbidden event.

The translation algorithm uses a context-free grammar [26] with semantic

information for LSCs. It applies an active chart parser [26]. The terminals of

the grammar, the words, are static terminals relevant to the LSC language

and dynamic terminals relevant to the specific system being described. The

dynamic terminals are incremented with each additional requirement. The

WordNet dictionary [31] is used to find information about terminal words

that are domain specific and add them as the relevant part of speech. There-

fore, the language is domain general and the user can describe any system.

The parsing is non-linear and takes O(n3), for an input with n terms.

However, this is compensated for by the fact that n is not too long for a

single requirement. When there are ambiguities in interpreting a phrase, a

short dialog with the user asks him/her to resolve them. The dialog with the

11

(a) (b)

Figure 1: (a) A sample PlayGo LSC, created for the sentence “when the user
clicks the button, the display color changes to yellow”. (b) A Play-Engine
LSC, created for the sentence “when the beeper turns on, as long as the
beeper state is on, if two seconds elapse the beeper beeps, the display mode
cannot change” with a forbidden cold event shown at the bottom of the LSC.

12

user is performed through a quick fix interface [5], in which the questions of

the system are displayed when hovering over a squiggly line that marks the

questioned text. The user is also presented with a quick list of solutions that

the algorithm suggests, and he can quickly resolve the problems by selecting

an option from the list.

13

3 Show & Tell, or Combining NL and Inter-

active Play-In

The original LSC paradigm suggested in 1999 by Damm and Harel [7] was

augmented with the interface of play-in in 2003 by Harel and Marelly [22].

Using this interface the user can “play-in” scenarios with the GUI of the

system in order to create parts of the LSC. For example, if the user clicks a

button, then the message click between user and button is added to the

current diagram. The ability to demonstrate behaviors or point to objects

has been used in additional interfaces for programming or for applications

[6].

Some scenario parts are better described than shown, and others are

quicker to show. Therefore, we have created the show & tell interface that

extends our natural language interface with the play-in idea. It is described

in [14]. Show & tell allows alternating between the writing (or the uttering,

when applying speech recognition methods) and the showing, according to

the preference of the user. The algorithm interprets the interaction based on

the current state of the text. It calculates the interaction’s intention based

on the current text, and suggests whether the interaction was meant to refer

to the operation, to an object name or to a full part of the scenario.

For example, the interpretation of an interaction like the user click of

a button, depends on the text entered at the interaction time. If the tex-

tual requirement is “when the user” the interaction will automatically add

the additional text of “clicks the button”. However, if the textual re-

quirement entered was “when the user clicks the”, the same operation

— clicking of the button, would only add “button” to the text.

When a GUI of the system exists, it is necessary to refer to the exact

object name or operation, in order for the executable requirements to operate

correctly. Show & tell adds the ability to point to objects or demonstrate

operations (e.g., sliding, selecting) to get their exact name as given during

14

GUI development.

The algorithm that interprets the interaction, extends the natural lan-

guage parser with on-line capabilities. Each interaction adds a set of pos-

sible grammar edges with the relevant object and operation names. These

edges are processed by the parser with respect to its state at the time of the

interaction. The active chart parser has been adopted to deal with multiple

possible inputs and it selects those edges that complete the current parse.

A completion is defined as a grammar edge that advances the current parse

and is correct grammatically. The best completion is defined as the one that

adds the longest additional text to the current text. The user is provided

with the best completion as a suggestion, and he can view and select other

possible interpretations of the interaction. After he approves the additional

text, it is added to the current requirement and later becomes part of the

LSC. Details are provided in [14].

15

4 Evaluation of the Various Interfaces for LSC

We developed the natural language interface to render programming in LSC

learnable, usable, and natural, in the hope it will be a step towards the

vision of liberating programming [19]; e.g., making the process of specifying

to a computer what to do more intuitive, natural and fun. Accordingly, this

section describes research we have performed on user evaluation of the LSC

language and the new interfaces for it: the natural language interface and

the show & tell. Language comparisons and claims about the naturalness of

a programming language are difficult to prove [29]. Nevertheless, we have

developed an experimental setup to test the following research questions: (i)

Is the natural language interface quickly learnable and how do the various

interfaces of the LSC language compare? (ii) How does the LSC language

compare with Java (as an example of a common procedural language) in

programming times and when considering user preferences?

The preliminary study involved 12 programmers familiar with the LSC

language that programmed 3 simple tasks using the different LSC interfaces:

using diagram tools, using the original play-in, using the natural language

interface and using the show & tell. We found evidence that the natural lan-

guage interface was quickly learnable by the majority of the programmers,

and the majority reported that using the natural language interfaces felt to

them quicker than the other interfaces. Additionally, some of the program-

mers reported the NL interface as fun. The experiment pointed-out some

interesting issues: the fact that there are multiple ways to describe behavior

in NL (rather than an exact syntax) can be hard for some programmers; es-

pecially for those that wish to learn an exact syntax. We believe it would be

interesting to collect additional parameters and also evaluate the approach

for non-programmers.

We also saw that for programmers who are used to typing, the show & tell

interface did not offer an advantage. Participants mentioned the fact that it

required them to switch between keyboard and mouse, which slowed them

16

down. We believe additional evaluation can be used to show whether this is

also true for non-programmers, who may be slower at typing. Additionally,

we hypothesize that when the tell part is replaced by a speech recognition

engine, the advantages of the show part will become more prominent.

Additional tasks were used to compare these interfaces with programming

in a different language, namely, Java. In the tasks we designed, the majority

of the expert Java developers preferred LSCs with the NL interface over Java.

They explained the advantage of the LSC language, in the given task, in how

simple it was to specify in LSCs that multiple events should occur before the

system should perform an action.

Figure 2 shows the PlayGo [20] tool during the experiment. More details

on the evaluation can be found in [15].

17

Figure 2: PlayGo environment, with a sample LSC and the natural language
that created it. The GUI used in the experiment appears on the right and
the editing menu is above it.

18

Figure 3: A large LSC, only the half part is displayed in order for the messages
to be readable.

5 Semantic Navigation of LSC

Another contribution of our research to the visual language of LSC, which is

also relevant to sequence diagrams (SD) [34], is in the field of diagram com-

prehension — navigating large LSCs. In a visual programming language as

LSC, the navigation and ability to comprehend depend on the available tools.

We have created a semantic navigation algorithm that allows zooming in or

out of large diagrams, focusing on events or messages that are more relevant

to a given task, and leaving context hints for full diagram comprehension.

Figure 3 shows an example of a large LSC.

19

Figure 4: The zoomed LSC, with placeholders.

Our semantic zoom algorithm, described in [13], uses semantic weights to

show/hide different elements in the diagram, while hinting at those hidden

using a placeholder. Figure 4 shows a zoomed LSC. The placeholders are

depicted as gray rectangles. The placeholder weights are coded by the level of

the grayscale color, thus hinting at the amount of information being hidden.

Moreover, the various placeholders are merged when possible to save space,

but are used also to show the structure of the diagram. Additional details

and the various ways to calculate useful weights can be found in [13].

20

6 Papers

This section includes copies of the following published peer-reviewed papers:

1. M. Gordon and D. Harel. Generating Executable Scenarios from Nat-

ural Language”, In Proc. 10th International Conference on Computa-

tional Linguistics and Intelligent Text Processing, CICLing’09, Lecture

Notes In Computer Science, vol. 5449. Springer-Verlag, 456-467, 2009.

2. M. Gordon and D. Harel. Show-and-Tell Play-In: Combining Natu-

ral Language with User Interaction for Specifying Behavior. In Proc.

IADIS Interfaces and Human Computer Interaction, IHCI’11, pages

360-364, 2011.

3. M. Gordon and D. Harel. Evaluating a Natural Language Interface

for Behavioral Programming. In Proc. of IEEE Symp. on Visual

Languages and Human-Centric Computing, VLHCC’12, pages 17-20,

2012.

4. M. Gordon and D. Harel. Semantic Navigation Strategies for Scenario-

Based Programming, In Proc. IEEE Symposium on Visual Languages

and Human-Centric Computing, VLHCC’10, pp. 219-226, 2010.

Additionally, we include a broad review paper covering the core of the

thesis, namely, the natural language interface and the the show & tell method,

which has yet to be published. The paper is titled “Programming in Natural

Language” and it subsumes papers 1, 2 and 3 from the above list.

21

Generating Executable Scenarios from Natural
Language

Michal Gordon and David Harel

The Weizmann Institute of Science, Rehovot, 76100, Israel
{michal.gordon,dharel}@weizmann.ac.il

Abstract. Bridging the gap between the specification of software re-
quirements and actual execution of the behavior of the specified system
has been the target of much research in recent years. We have created
a natural language interface, which, for a useful class of systems, yields
the automatic production of executable code from structured require-
ments. In this paper we describe how our method uses static and dynamic
grammar for generating live sequence charts (LSCs), that constitute a
powerful executable extension of sequence diagrams for reactive systems.
We have implemented an automatic translation from controlled natural
language requirements into LSCs, and we demonstrate it on two sample
reactive systems.

1 Introduction

Live Sequence Charts are a visual formalism that describes natural “pieces” of
behavior and are similar to telling someone what they may and may not do, and
under what conditions. The question we want to address here is this: can we
capture the requirements for a dynamic system in a far more natural style than
is common? We want a style that is intuitive and less formal, and which can also
serve as the system’s executable behavioral description [1].

To be able to specify behavior in a natural style, one would require a simple
way to specify pieces of requirements for complex behavior, without having to
explicitly, and manually, integrate the requirements into a coherent design. In
[2], the mechanism of play-in was suggested as a means for making programming
practical for lay-people. In this approach, the user specifies scenarios by play-
ing them in directly from a graphical user interface (GUI) of the system being
developed. The developer interacts with the GUI that represents the objects in
the system, still a behavior-less system, in order to show, or teach, the scenario-
based behavior of the system by example (e.g., by clicking buttons, changing
properties or sending messages). As a result, the system generates automati-
cally, and on the fly, live sequence charts (LSCs) [3], a variant of UML sequence
diagrams [4] that capture the behavior and interaction between the environment
and the system or between the system’s parts. In the current work we present an
initial natural language interface that generates LSCs from structured English
requirements.

An LSC describes inter-object behavior, behavior between objects, capturing
some part of the interaction between the system’s objects, or between the system
and its environment. LSCs distinguish the possible behavior from the necessary
behavior (i.e., liveness, which is where the term “live” comes from), and can
also express forbidden behavior — scenarios that are not allowed, and more.
Furthermore, LSCs are fully executable using the play-out mechanism developed
for LSCs in [2], and its more powerful variants [5, 6]. To execute LSCs the play-
out mechanism monitors at all times what must be done, what may be done
and what cannot be done, and proceeds accordingly. Although the execution
does not result in an optimal code, nor is the executed artifact deterministic
(since LSC are under-specified) it is nevertheless a complete execution of the
LSC specification. The execution details are outside the scope of this paper, but
are described in detail in [5, 2].

By its nature, the LSC language comes close to the way one would specify
dynamic requirements in a natural language. We suggest to take advantage of
this similarity, and to translate natural language requirements directly into LSCs,
and then render them fully executable. One interesting facet of this idea is rooted
in the fact that the natural and intuitive way to describe behavioral requirements
will generate fragmented multi-modal pieces of behavior which is also the main
underling philosophy of LSCs. The play-out mechanisms are able to consider all
the fragmented pieces together as an integrated whole, yielding a fully executable
artifact. Thus, our translation into LSCs can be viewed as a method for executing
natural language requirements for reactive systems.

As to related work (discussed more fully later), we should say here that
natural language processing (NLP) has been used in computer-aided software
engineering (CASE) tools to assist human analysis of the requirements. One use
is in extracting the system classes, objects, methods or connections from the
natural language description [7, 8]. NLP has been applied to use case description
in order to create simple sequence diagrams with messages between objects [9], or
to assist in initial design [10]. NLP has also been used to parse requirements and
to extract executable code [11] by generating object-oriented models. However,
it is important to realize, that the resulting code is intra-object — describes
the behavior of each object separately under the various conditions, and it is
usually limited to sequential behavior. The resulting OO artifact is focussed on
object-by-object specification, and is not naturally inter-object.

The paper is structured as follows: Section 2 contains some brief prelimi-
naries, Section 3 presents an overview of the translation method, and Section 4
demonstrates the details using an example. Section 5 discusses related work and
Section 6 concludes.

2 Preliminaries

In its basic form, an LSC specifies a multi-modal piece of behavior as a sequence
of message interactions between object instances. It can assert mandatory be-
havior — what must happen (with a hot temperature) — as well as possible

behavior — what may happen (with a cold temperature). The LSC language
[3] has its roots in message sequence charts (MSC) [12] or its UML variant, se-
quence diagrams [4], where objects are represented by vertical lines, or lifelines,
and messages between objects are represented by horizontal arrows between ob-
jects. Time advances along the vertical axis and the messages entail an obvious
partial ordering. Figure 1 shows a sample LSC. In this LSC the prechart events,
those that trigger the scenario, appear in the top blue hexagon; in this case, a
cold (dashed blue) click event from the user to the c button. If the prechart is
satisfied, i.e., its events all occur and in the right order, then the main chart (in
the black solid rectangle) must be satisfied too. In the example, there is a hot
(solid red) event where the light state changes to on and a cold condition, in
the blue hexagon, with a hot event in the subchart it creates. The meaning is
that if the display mode is not time, then it must change to time. There is no
particular order between the events in the main chart in the example, although
in general there will be a partial order between them, derived from the temporal
constraints along the vertical lifelines.

Fig. 1. A simple LSC. The prechart (the blue dashed hexagon) contains the cold event
(blue dash arrow) “user clicks the c button”, while the main chart (the black solid
rectangle) shows two hot events (red solid arrow): one shows the light state changing
to on and the other is a hot event with a cold condition (blue dashed hexagon) that
specifies that if the mode is not time then it must change to time.

The basic LSC language also includes conditions, loops and switch cases. In
[2], it has been significantly enriched to include time, scoped forbidden elements,
and symbolic instances that allow reference to non-specific instances of a class.

Later, we will be describing a context-free grammar for behavioral require-
ments that will serve as our controlled English language. To recall, a context-free
grammar (CFG) is a tuple G = (T,N, S,R), where T is the finite set of termi-
nals of the language, N is the set of non-terminals, that represent phrases in
a sentence, S ∈ N is the start variable used to represent a full sentence in the
language, and R is the set of production rules from N to (N ∪ T)∗. In the LSC
grammar, parts of the grammar are static TS and other parts are dynamic TD.

3 Overview of LSC Grammar

Requirements are a way of describing scenarios that must happen, those that can
happen, and those that are not allowed to happen. The static terminals describe
the flow of the scenario; e.g., “when something happens then another thing
should happen”, or “if a certain condition holds then something cannot occur”.
The dynamic terminals refer to the model, the objects and their behaviors.

The static terminal symbols are if, then, must, may etc. They are relevant
for inferring the semantics of LSCs. The dynamic terminals are all unrecognized
terminals processed by a dictionary and transformed from part of speech to pos-
sible parts of the model. They are grouped into objects, properties, methods
and property values which are not mutually exclusive.

For example in: “The user presses the button”, user and button are both
objects. Similarly, presses is a verb that is added to the methods terminal
list. Other types of terminals are properties and property values. These can be
identified as in the following example: “the display color changes to red”, where
the noun color, which is part of the noun phrase, is a property of the display
object and the adjective red is a possible property value. Property values may
also include possible variables for methods.

Fig. 2. The parse tree for the sentence “when the user clicks the button, the light
turns on”. The parts of the LSC grammar detected are shown. There is one message
Msg which is a message from object phrase (OP) user to object phrase button, and
another self message SelfMsg of object light with method turn and argument on.

Figure 2 displays the parse tree for the requirement: “when the user clicks the
b button, the light turns to on”. When analyzing the parse tree, the when and
then hint to where the prechart ends and the main chart begins, the messages

added are click from the user to the button in the prechart and turn with a
parameter on in the main chart, as seen in Fig. 3(a).

(a) (b)

Fig. 3. Sample LSCs. (a) A simple LSC created for the sentence: “when the user clicks
the b button, the light turns on”. (b) A more complex LSC created for the sentence:
“when the beeper turns on, as long as the beeper state is on, if two seconds have
elapsed, the beeper beeps and the display mode cannot change”.

The grammar is inherently ambiguous, due to use of dictionary terminals.
The same word could be used for noun, object or property value. We therefore
parse each sentence separately and update the grammar as the user resolves am-
biguities relevant to the model. Our parser is an active chart parser, bottom-up
with top-down prediction [13]. We detect errors and provide hints for resolving
them using the longest top-down edge with a meaningful LSC construct. For ex-
ample a message or a conditional expression that have been partially recognized
provide the user with meaningful information.

4 LSC Grammar Constructs

4.1 Example Requirements Translation

We now describe the main parts of our method for automatically translating
structured requirements into LSCs. We demonstrate the main language phrases
by constructing a simplified version of a digital watch described in [14]. There,
the watch behavior was described using statecharts formalism. Here, we describe
the same system in natural language and then automatically transform it into

LSCs. Generally, the watch displays the time and can switch between different
displays that show (and allow changes to) the alarm, date, time and stopwatch.
It has an option to turn on a light, and it has an alarm that beeps when the set
time arrives.

An example, taken verbatim from [14] is this: “[The watch] has an alarm that
can also be enabled or disabled, and it beeps for 2 seconds when the time in the
alarm is reached unless any one of the buttons is pressed earlier”. This require-
ment is ambiguous and unclear for our purposes: when a button is pressed should
the alarm time be cancelled or should the beeping stop? Basic user knowledge
of the system helps us infer that the beeper should stop. Also, the fact that the
alarm beeps only when it is enabled is deduced by common knowledge, as it is
not explicit in the text. The structured requirements for these will be: “when the
time value changes, if the time value equals the alarm value and the alarm state
is enabled, the beeper turns on”; “when the beeper turns on, if two minutes have
elapsed, the beeper turns to off”; “when the user presses any button, the beeper
shall turn off”. Although the original requirement is fragmented and separated
into several requirements, the combined effect of these requirements will achieve
the same goal.

4.2 Translating Constructs

In this section we show how our initial grammar translates controlled natural
language to LSCs. The grammar is structured and required rigid and clear re-
quirements, however they are natural to understand and compose. Since we allow
multiple generations of similar constructs we hope to enlarge the possible spec-
ifications. We shall describe how the basic structures — messages and property
changes, and some of the less trivial ideas that include parsing temperature,
conditions, loops and symbolic objects. Few advanced ideas such as asserts and
synchronization are not supported at the current time, nevertheless, the current
grammar allows implementing executable systems and has been tested on the
digital watch example and on an ATM machine example.

Messages. The simplest language construct in LSCs is the message between
objects, or from an object to itself. Messages can be method calls or property
changes. In the case of methods, the verb specifies the method to call. For ex-
ample “the c button is clicked” is mapped into a self message from the c button
to itself. Messages can also be specified between objects as in “the user presses
the c button”. Parameters can also be used as in: “the light turns to on”, in
which case the turn method of the light is invoked with a value of on as a
parameter. When a sentence can be fully parsed into more than one basic struc-
ture, the user is notified of the location and selects the terminal to use for the
word. For example is the button an argument for press or an object with the
method press. The user selection is integrated into the dictionary using weights
which effectively cause the button in the rest of the text to be an object, unless
specified differently.

Temperature. LSCs allow the user to specify whether something may happen,
for which we use a cold temperature (depicted in dashed blue lines), or what must
happen, which is hot (depicted by solid red lines). The grammar allows the user
to specify the temperature explicitly by using the English language constructs
may or must and some of their synonyms. If the user does not explicitly specify
the temperature of the event, it is inferred from the sentence structure. For
example, the when part is cold and the then part is hot. In English it is obvious
that the when part may or may not happen, but that if it does then the then
part must happen. See Fig. 4 for an example.

Fig. 4. The LSC created for the sentence “when the user presses the d button, if the
display mode is date, the display mode changes to time”. The message in the when
part is cold (dashed blue arrow), while the messages in the then part are hot (solid red
arrows).

Conditions. Conditions, that are frequent in system requirements are readily
translated into conditions in the LSC formalism. The grammar accepts expres-
sions that query an object’s property values, such as “if the display mode is
time”. The condition is implemented in the LSC as a cold condition, and all
phrases that occur in the then part of the phrase appear in the subchart of the
condition. The dangling-else ambiguity that appears frequently in programming
languages is resolved similar to most parsers by choosing the ’else’ that com-
plete the most recent ’if’, which is reasonable also in natural text. We allow the
user to manipulate the hierarchical structure of the sentence using commas and
conjunctions, see, for example, Fig. 5.

Symbolic Objects. In English, definite or indefinite determiners are used to
specify a specific object or a non-specific object respectively. The determiners
are part of the static terminals that differentiate between objects and symbolic
objects. Consider the sentence “when the user presses any button, the beeper
shall turn to off”. The requirement is translated into the LSC of Fig. 6, where
the button is symbolic (drawn with a dashed borderline) and can be any of the
buttons. The LSC semantics also requires that a symbolic object becomes bound

(a) (b)

Fig. 5. Conditions in LSCs. (a) The LSC created for the sentence “when the user
presses the d button, if the display mode is time, the display mode changes to date,
otherwise if the display mode is date, the display mode changes to time”. (b) Shows
what would happen if the otherwise would be replaced by an and. The second condition
is not an alternative to the first, and the behavior would not be as expected. Consider,
for example, what would happen if the display mode is time: the execution would enter
both conditions and nothing would happen to the display mode. This behavior could
also be avoided by separating the single requirement into two different requirements,
resulting in two separate LSCs.

using an interaction with another object or a property. Thus, the sentence “when
the user presses a button, a display turns on” is not valid, since the display

is not bound at all and is supposedly symbolic. It is clear that the sentence
is ambiguous also to an English reader, and the user is prompt to resolve the
problem.

Forbidden Elements. Our grammar also supports forbidden elements when
using negation of messages. For example, “the display mode cannot change”
would result in a forbidden element. The scope of forbidden elements is important
to the semantics of LSCs; i.e., to what parts of the LSC they are relevant. We
use the syntax tree and the location of the forbidden statement in it to resolve
the scope, conjunction can be used to verify that a forbidden phrase is inside a
subchart. See Fig. 3 (b) for an example.

Forbidden Scenarios. In addition to specifying negative events as forbidden
elements, one can also specify forbidden scenarios — scenarios that cannot hap-
pen. These are specified using language phrases such as ”the following can never
happen”, prefixing the scenario that is to be forbidden. In the LSC, the scenario
described is created in the prechart with a hot false condition in the main chart,
which entails a violation if the prechart is completed. To separate the ’when’
from the ’then’ parts of the scenario, we add a synchronization of all the objects

Fig. 6. The LSC created for the sentence “when the user presses any button, the beeper
shall turn to off”. The button object referred to by the user is a non-specific object and
is therefore translated as a symbolic object of the button class, shown using a dashed
box.

referenced in the scenario at the end of the ’when’ part as extracted from the
syntax tree.

Additional Constructs. The grammar supports translation into additional
LSC constructs, such as local variables, time constraints, loops and non-determinism.
It is currently of preliminary nature and is being extended to deal with addi-
tional ways of specifying new and existing constructs to make it more natural to
users. The fact that sentences are parsed separately allows the use of the ambigu-
ous grammar. Resolution of ambiguity is achieved by interaction with the user
to obtain information about the model and by propagating model information
between different sentences.

4.3 Implementation and Execution

Once the requirements are parsed and the model is known, the objects and their
basic methods are implemented separately with the names extracted from the
text. We use the dictionary to extract word stems and we also support word
phrases for methods or objects by concatenating the words with a hyphen. We
implemented the watch’s simple interface with the Play-Engine GUIEdit tool
described in [2]. In the final implementation, logical objects that have properties
or methods, that do not effect the system visually and do not need additional
implementation, are created automatically in the Play-Engine.

The GUI was set up to include the objects low level behavior (e.g., the
button’s click, the light’s turn on, the time’s increase). In the future we plan
to attempt to connect directly to an existing model by extracting the object
names and methods by using reflection on the model and matching them to the
specification using synonyms [15].

Requirements were written to describe all aspects of the watch’s behavior
depicted in the statechart of the watch. A demonstration of the implemented
watch is available in [16]. We also implemented another system — an ATM —
to test the grammar. Since currently the grammar requires explicit repetition
of objects and often needs the user to specify the behavior using a particular

sentence, we would like to extend the grammar and also integrate some form of
reference resolution.

5 Related Work

NLP has been used to aid software engineering in many ways. In [17] controlled
natural language use case templates are translated into specifications in CSP
process algebra that may be used for validating the specified use cases. Use cases
are specified in a table containing different steps of user action, system state and
system response. Our approach allows inputting information of multiple steps
in a single sentence more naturally and integrating different requirements. Our
LSCs can also be validated or run (see smart play-out [5]) using model checkers.

There are approaches that generate executable object oriented code from
natural language. The approach in [8] uses two-level-grammar (TLG) to first
extract the objects and methods (a scheme that may be used for our initial phase
as well) and it then extracts classes, hierarchies and methods. In [11], TLG is
used to output UML class diagrams and Java code. The methods are described
in natural language as a sequence of intra-object behaviors. (In contrast, our
approach connects inter-object requirements and appears to be more fitting for
reactive systems.)

Attempto Controlled English (ACE) [18, 19] is a user-friendly language, based
on first-order logic with rich English syntax, for translating NL into Prolog. It
can by used for basic reasoning and queries but not for reactive systems.

Other works assist UML modeling and the design procedures with support
tools that help extract the main objects and message sequences from natural
language [20, 21], thus making the transition from a NL specification to design
less prone to errors. In [21] the scenarios in use cases are parsed to extract a
tight representation of the classes and objects for the class diagram.

By and large, we have not encountered a translation that can create a reactive
system from fragmented requirements.

6 Conclusions and Future Work

Creating complex reactive systems is not a simple task and neither is understand-
ing natural language requirements. We have presented a method that allows one
to translate controlled NL requirements into LSCs, with which a reactive system
can be specified. The implementation of the system is thus a set of fragmented
yet structured requirements — namely the LSCs, which are both natural and
fully executable.

The current situation regarding the execution of LSCs is not without its
limitations. For example, LSCs do not always result in a deterministic execution
and the execution is also not always optimal. However, there is progress in many
directions regarding the execution of LSCs; e.g., using an AI planning algorithm
[6] can help the user choose one deterministic and complete path for system
execution.

The ability to translate a controlled language into LSCs is a step in the right
direction. The translation we suggest is tailored for the LSC language. However,
it needs to be extended in order to support more of the rich language that
humans normally use.

We would like to extend our scheme so that it becomes reasonably robust to
errors, more user-friendly and so that it includes also dialogues that will help
users understand how to write controlled requirements. We have yet to test the
system on naive subjects.

We would like to add more abilities that will improve the natural language
interface with the user. For example allowing specification using language “short-
cuts”, e.g. using the word toggles for changing between a few properties. We
would like to add reference resolution, allowing the user to refer to objects pre-
viously mentioned as it. We would like to integrate NLP tools that resolve aliases
for methods and properties, using dictionaries and common sense systems, this
would allow the system to understand that different words refer to the same
method or property, for example that click and press are the same method.

Another direction we would like to pursue is to include tools for transforming
NL requirements to LSCs and back in a round-trip fashion, to enable easy project
modification.

We believe the LSCs and the inter-object approach are naturally close to NL
requirements. We hope the work presented here constitutes a small step towards
improving the process of engineering reactive systems using natural language
tools.

7 Acknowledgments

The authors would like to thank Shahar Maoz, Itai Segall and Dan Barak for
helpful discussions and technical assistance. We would also like to thank the
reviewers of an earlier version of this work for their helpful comments.

References

1. Harel, D.: Can Programming be Liberated, Period? Computer 41(1) (2008) 28–37

2. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag (2003)

3. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1) (2001) 45–80

4. UML: Unified Modeling Language Superstructure, v2.1.1. Technical Report
formal/2007-02-03, Object Management Group (2007)

5. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-Out of Behavioral
Requirements. Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), Springer-Verlag (2002) 378–398

6. Harel, D., Segall, I.: Planned and Traversable Play-Out: A Flexible Method for Ex-
ecuting Scenario-Based Programs. Proc. 13th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’07). (2007) 485–499

7. Mich, L.: NL-OOPS: From Natural Language to Object Oriented Requirements
Using the Natural Language Processing System LOLITA. Natural Language En-
gineering 2(2) (1996) 161–187

8. Bryant, B.: Object-Oriented Natural Language Requirements Specification. Proc.
23rd Australian Computer Science Conference (ACSC). (2000)

9. Segundo, L.M., Herrera, R.R., Herrera, K.Y.P.: UML Sequence Diagram Generator
System from Use Case Description Using Natural Language. Electronics, Robotics
and Automotive Mechanics Conference (CERMA’07) 0 (2007) 360–363

10. Drazan, J., Mencl, V.: Improved Processing of Textual Use Cases: Deriving Be-
havior Specifications. Proc. 33rd Int. Conf. on Trends in Theory and Practice of
Computer Science (SOFSEM’07). (2007) 856–868

11. Bryant, B.R., Lee, B.S.: Two-Level Grammar as an Object-Oriented Requirements
Specification Language. Proc. 35th Annual Hawaii Int. Conf. on System Sciences
(HICSS’02). (2002) 280

12. ITU: International Telecommunication Union: Recommendation Z.120: Message
Sequence Chart (MSC). Technical report (1996)

13. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice-Hall (2008)

14. Harel, D.: On Visual Formalisms. Commun. ACM 31(5) (1988) 514–530
15. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to

WordNet: An On-line Lexical Database. http://wordnet.princeton.edu/ (1993)
16. Requirements to LSCsWebsite: http://www.wisdom.weizmann.ac.il/ michalk/reqtolscs/
17. Cabral, G., Sampaio, A.: Formal Specification Generation from Requirement Doc-

uments. Brazilian Symposium on Formal Methods (SBMF). (2006)
18. Fuchs, N.E., Schwitter., R.: Attempto: Controlled natural language for require-

ments specifications. Proc. Seventh Intl. Logic Programming Symp. Workshop
Logic Programming Environments. (1995)

19. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). Proc. 1st Int.
Workshop on Controlled Language Applications. (1996) 124–136

20. Takahashi, M., Takahashi, S., Fujita, Y.: A Proposal of Adequate and Efficient
Designing of UML Documents for Beginners. Knowledge-Based Intelligent Infor-
mation and Engineering Systems. (2007) 1331–1338

21. Giganto, R.T.: A Three Level Algorithm for Generating Use Case Specifications.
Proceedings of Software Innovation and Engineering New Zealand Workshop 2007
(SIENZ07). (2007)

SHOW-AND-TELL PLAY-IN: COMBINING NATURAL

LANGUAGE WITH USER INTERACTION FOR

SPECIFYING BEHAVIOR

Michal Gordon and David Harel
Weizmann Institute of Science

Rehovot, Israel

ABSTRACT

In search of improving the ways to create meaningful systems from requirements specifications, this paper combines the

showing and telling of how a system should behave. Using scenario-based programming and the language of live

sequence charts, we suggest how user interaction with the system and user written requirements in natural language can

interleave to create specifications through an interface that is both natural and agile.

KEYWORDS

Intelligent interfaces, Requirement engineering, Scenario-based programming, Live sequence charts

1 INTRODUCTION

Scenario-based programming is a method that allows specifying system behavior by describing system

scenarios using precise and executable methods. The language of live sequence charts (LSC) (Damm and

Harel 2001) is one method for these types of descriptions. LSCs add expressive power to earlier sequence-

based languages by being multi-modal: an LSC can distinguish what must happen from what may happen,

and can specify also what is forbidden from happening. The resulting specification is fully executable.

One of the advantages of LSCs is their use for describing system behavior for reactive systems. The

language constitutes a step in the direction of liberating programming and making programming more

accessible to people who are not programmers, as described in (Harel 2008). The LSC language has been

extended with a tool (the Play-Engine) that supports intuitive GUI-based methods for capturing the behavior

(termed play-in) and for executing a set of LSCs (termed play-out); see (Harel and Marelly 2003). The

present work focuses on introducing an enriched method for play-in, which creates an improved interface for

specifying system requirements and for scenario-based programming.

The new method combines natural language parsing methods with user interaction and uses these to

create an intelligent user interface. The user specifying the system’s behavior can use the method most

relevant for the type of behavior he/she is specifying, by showing — interacting with the system or by telling

— describing (parts of) the scenario in a semi-natural language (Gordon and Harel 2009). Any textual

requirements thus entered are parsed, so that our show-and-tell (S&T) play-in algorithm can intelligently

guess the user’s intention when there are multiple possibilities.

As in real life, a picture is often worth a thousand words and other times a textual description is more

appropriate. In analogy, there may be cases when the interaction is simpler to put in words than to

demonstrate, or vice-versa. The main contribution of this paper is in combining the two in a natural and

semantically meaningful way.

2 THE LANGUAGE OF LSCS AND PLAY-IN

In its basic form, an LSC specifies a multi-modal piece of behavior as a sequence of message interactions

between object instances. It can assert mandatory behavior — what must happen (with a hot temperature) —

or possible behavior — what may happen (with a cold temperature), as well as what is forbidden from

happening. In the LSC language, objects are represented by vertical lines, or lifelines, and messages between

objects are represented by horizontal arrows between objects. Time advances along the vertical axis and the

messages entail an obvious partial ordering. The events that trigger the scenario appear at the top in blue

dashed lines; if they are satisfied, i.e., all events occur and in the right order, then the hot events (in red solid

lines) must be satisfied too. See (Harel&Marelly 2003).

Play-in is a method for capturing a scenario in an LSC by interacting with a GUI representation of the

system. This allows users to operate the final system, or a representation of it, thus ’recording’ their behavior

by demonstrating it. Although play-in is intuitive and can be easily adopted by users without orientation to

programming, it has some drawbacks. First, it requires a pre-prepared GUI of the non-behaving system.

Although this is reasonable for some systems (e.g., a general robot with no behavior), in others the

specification of the GUI will typically only emerge after considering parts of the system behavior. Another

problem is that interactions relevant to the system’s behavior often take place among logical objects, for

which there can exist only some general representation with possible lower level functions and properties. It

is straightforward to interact with a button that initializes a wireless connection, but there is no need to force

a graphical representation on the wireless connection when referring to it.

There are also many requirements that are less interactive and more programmatic in their essence, such

as specifying a condition or selecting some variable. These are the cases where S&T-play-in becomes

relevant: natural language descriptions are quick and simple and can be interleaved with interaction when it is

most relevant, as we show below.

Play-in has been extended by controlled natural English (Gordon and Harel 2009). Nouns and verbs are

found using the Wordnet dictionary by Miller et. al. (1993) and LSCs are created based on interactions

specified in clear sentences, using a specially tailored context free grammar for LSCs. Ambiguities are

resolved by the person entering the requirements when the sentences do not translate into meaningful LSCs.

The model of the system, its objects and possible low level behaviors, accumulate, and are used to

translate further sentences more successfully. In this scheme, no GUI is required at the initial stages of the

process, and it can be designed later, based on the system model. This allows the requirements engineer or

programmer to concentrate on the system’s behavior rather than on its structure and components.

One advantage of the natural language approach is the ability to refer to system objects, conditions,

variables and loops in the text in a way that is close to the process performed when the application expert

simply writes what he/she wants the system to do.

The natural language play-in of Gordon and Harel (2009) emphasizes writing logical constructs in

English, rather than selecting them from menus or dragging them from a graphical toolbar. However, there

are cases when using the mouse to point and select is quicker. When a certain knob has a graphical

representation and possible low level behaviors, then showing the action may be more convenient than telling

or describing it textually. As when a parent directs a child to return the milk to its proper place in the

refrigerator could involve the parent saying ‘please return the milk to its place’, while pointing to the

refrigerator.

3 SHOW-AND-TELL PLAY-IN

The show-and-tell-play-in method (S&T-play-in) uses online parsing and the state of the current parse to

interpret the interaction and integrate it into the scenario-based requirement; i.e., into the LSC that is being

constructed on the fly.

An interaction can be interpreted in multiple ways. When an object is selected (from the model or the

GUI), either its name or the operation performed on it (e.g., clicked, or turned) may be integrated into the

sentence. When an object property is selected, it may be a reference to the property name or to the property

value. The parsing is performed bottom-up using an active chart parser similar to that of Kay (1986) and

adapted for online parsing as in Jurafsky and Martin (2009), Figure 1a shows the system architecture and

Figure 2 provides details of the algorithm.

In each requirement being entered, the indexes represent the locations between the words (as in 0 when 1

the 2 user 3). An edge represents a grammar rule and the progress made in recognizing it. We use the common

dotted rule, where a dot ('●') within the right-hand side of the edge indicates the progress made in recognizing

the rule, and two numbers indicate where the edge begins on the input and where its dot lies.

Figure 1. (a) The system architecture. (b) Part of the baby monitor sample application GUI.

Technically, an interaction generates possible edges for the parsing with the object names or operations

selected, and the algorithm tests which edges complete the current parse properly. The longest valid

completion is selected (Figure 2b), and additional valid possibilities are presented to the user and can be

selected by him/her on the fly.

Figure 2. (a) Parse procedures from Jurafsky and Martin (2009), (b) ProcessNewWord is used for online parsing, while

ProcessUserInput is used to fuse interactions into the parsing.

Consider the example in Fig. 3. The textual requirement at the interaction point is ‘when the user’, so the

parse is not complete. However, some edges are already completed in the bottom-up parsing, shown above

the sentence part, as can be seen in the left part of the figure, which displays edges as curved lines.

We assume that an interaction creates only complete edges, since when guessing what the user meant, it is

reasonable to assume he/she thinks in complete ‘chunks’ of the language; e.g., he/she can refer to a noun, a

verb, or parts of sentences that include them. For example, while ’[the button]‘ and ’[clicks] [the button]‘ are

reasonable edges and are complete edges in the grammar, ’[clicks] [the]‘ is not, as can be seen in Fig. 3c.

At each step, the algorithm adds one of the edges or a set of edges to the current parse, and tests whether

these interaction edges advance or complete any of the parse edges, as shown in Fig. 2 ProcessUserInput.

From the possible completed or advanced edges, the longest one is selected; in Fig. 3b, this would be the top

edge.

Figure 3. Parse sample for the sentence "when the user" and an interaction of [clicking a button].

4 CASE STUDY: THE BABY MONITOR

We describe some examples from the development process of a baby monitor system, which allows parents

to watch over their baby by monitoring respiratory movement and room temperature. We depict interaction

outputs in square brackets.

Since the parsing is online and the transformation to LSCs is linear, complete constructs can be directly

transformed to their LSC counterparts, which could allow the user to see the LSC created as he/she works.

Our current implementation only adds text according to user interaction and generates the visual

representation of the LSC when the user completes the requirement and selects the generate LSC option.

The interaction with a GUI (Figure 1b) or with the system model (the list of system objects without their

graphical representations) can involve one of three actions: selecting the object, performing an action (e.g.,

calling a method) or setting/getting a property (attribute) of the object.

One issue that needs to be dealt with when specifying LSC requirements is the question of whether the

interaction is meant as a full interaction or just the selection of the object. In the sentence: "when the user

clicks the [increase-threshold-temperature-button], the temperature-threshold increases", the interaction of

clicking the button adds only the button name to the already entered text. However, another example that

adds a full phrase is: "when [the user drags the sensitivity-button], the sound sensitivity changes to the

sensitivity-button value". Notice that the interaction adds a full phrase of dragging the sensitivity-button and

not only the object name because of the different text entered when the interaction occurs.

Another type of information that can be entered is the selection of properties, as in the sentence: "when

the baby-unit temperature changes, if the baby-unit temperature is greater than [temperature-threshold], the

[light state changes to blinking]”. In the first interaction, only the threshold property itself is added by the

interaction, while in the second part, the user changes the state of the light to blinking and the full phrase is

added to the sentence,. Sample clips can be found in http://www.wisdom.weizmann.ac.il/~michalk/SaT/.

5 RELATED WORK

The work presented here builds upon the original play-in idea of (Harel and Marelly, 2003), which allows

user interaction with a GUI for specifying behavior. User interaction for capturing behavior is also found in

many programming-by-example systems, from programming by dragging icons on screen in the Pygmalion,

Cocoa or Stagecase environments to constructing grammars with the Grammex system, all described by

Cyper et.al. (1993). These systems can be viewed as extensions of macro systems that allow recording a

sequence of operations performed by the user and then repeating the sequence while generalizing some

aspects of the operations, rather than specifying the full behavior explicitly.

The idea of multimodal interfaces as discussed by Ingebretsen (2010) is already in use in intelligent

interfaces for gaming and in smart phones. These modalities include speech, facial expression, body posture,

gestures and bio-signals. The question of multimodal synchronization and fusion is interesting for many

application areas. Perhaps the initial methods we discuss for requirement engineering synchronizing text (or

speech) and user’s mouse operations (comparable to gestures) can be useful in other fields too.

Using speech recognition and natural language as an interface for specification has been discussed before.

For example, in (Graefe and Bischoff, 1997), interacting with a robot can benefit from a combination, where

the context, the knowledge base acquired by the robot at each point, helps to better understand the directions

to the robot. Our method currently parses textual requirements, but we have also tested the use of speech

recognition dictation with the Microsoft™ Speech API 5.1. In S&T, the text (or speech) is used as the

context for understanding the interaction.

6 CONCLUSION AND FUTURE WORK

This paper introduces the idea of combining two interfaces: text and interaction with a GUI into a single

intelligent interface that interprets an interaction based on the state of the textual parse to allow generating

system requirements in a natural way. We show here only some of the possibilities of combining interaction

and text, as the domain of possibilities is fixed by the system interface and the grammar. Other interfaces that

have a text/speech interface using a grammar or command-and-control may benefit from a suitably adapted

version of the S&T interface.

The method requires further evaluation. One way to do this is to check and compare the time and effort

required to create diagrams using only play-in, using only natural language play-in and using S&T-play-in.

One extension we would like to add to the algorithm, is a generic method to create interaction edges using

a given grammar and minimal information on the interaction. This may make the method more useful outside

the particular LSC-based method for specifying system behavior.

ACKNOWLEDGEMENTS

We would like to thank Smadar Szekely and the other members of our group’s software team developing the

PlayGo tool used to test the method. This research was supported in part by the John von Neumann Minerva

Center for the Development of Reactive Systems at the Weizmann Institute of Science, and by an Advanced

Research Grant from the European Research Council (ERC) under the European Community's Seventh

Framework Programme (FP7/2007-2013).

REFERENCES

Cypher, A. et al, 1993. Watch What I Do: Programming by Demonstration. MIT Press.

Damm, W. and Harel, D., 2001. LSCs: Breathing Life into Message Sequence Charts. Formal Methods in System Design
19:1, 45–80.

Gordon, M. and Harel, D. 2009. Generating Executable Scenarios from Natural Language. Proc. 10th Int. Conf. on
Computational Linguistics and Intelligent Text Processing (CICLing’09), Mexico, pp. 456–467.

Graefe, V.and Bischoff, R., 1997. A Human Interface for an Intelligent Mobile Robot. Proc. 6th Int. Workshop on Robot

and Human Communication. Japan, pp. 194–199.

Harel, D. 2008. Can Programming be Liberated, Period?, IEEE Computer 41:1, 28–37

Harel, D. and Marelly R., 2003. Specifying and Executing Behavioral Requirements: The Play In/Play-Out Approach.

Software and System Modeling 2, 82–107.

Ingebretsen, M. 2010, In the News, Intelligent Systems, IEEE 25:4, 4–8

Jurafsky, D. and Martin, J. H. 2009, Speech and Language Processing: An Introduction to Natural Language Processing,

Computational Linguistics and Speech Recognition , Pearson Prentice Hall.

Kay, M., 1986. Algorithm schemata and data structures in syntactic processing. In Readings in Natural Language
Processing, Morgan Kaufmann, pp. 35–70.

Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D. and Miller, K., 1993. Introduction to WordNet: An On-line Lexical
Database. http://wordnet.princeton.edu/.

Evaluating a Natural Language Interface for
Behavioral Programming

Abstract—In behavioral programming, scenarios are used to
program the behavior of reactive systems. Behavioral program-
ming originated in the language of live sequence charts (LSC), a
visual formalism based on multi-modal scenarios, and supported
by a mechanism for directly executing a system described by
a set of LSCs. In an exploratory experiment, we compare
programming using LSCs with procedural programming using
Java, and seek the best interface for creating the visual artifact
of LSCs. Several interfaces for creating LSCs were tested, among
them a novel interactive natural language interface (NL). Our
preliminary results indicate that even experts in procedural
programming preferred the LSCs NL interface over the Java
alternative, and their implementation times were comparable to
those of the other interfaces tested. The results indicate that the
NL interface, combined with the scenario-based essence of LSCs,
may be a viable alternative to conventional programming.

I. INTRODUCTION

The language of live sequence charts (LSCs) [1] is part of
a grand challenge to create a new paradigm for programming
that would allow more people to define system behavior, by
making programming closer to how they think [2]. In the
new paradigm of behavioral programming the user specifies
the system behavior in an incremental way by specifying
independent scenarios. The visual language of LSCs allows
specifying scenarios of what may happen, what must happen
and what must not happen. These scenarios are based on
classical sequence diagrams with the additional modalities
of must/may/forbid and they can be executed directly using
methods from validation and model-checking [3], [4].

Recent research in this developing programming paradigm
has focused on execution, debugging, and visualizations. An
attempt has also been made to understand the how previous
programming experience affects the learnability of the lan-
guage by interviewing students learning the LSC language
[5]. Yet, the claim that the new paradigm may be useful to
programmers, and perhaps even to non-programmers, needs
to be evaluated too. Since LSCs as a behavioral programming
paradigm is conceptually different from procedural languages,
the usefulness of the language to “procedural” programmers
is still questionable. Additionally, because LSCs are visual in
nature, there are many ways to create them: (i) drawing the
diagram by dragging and dropping elements; (ii) playing-in the
scenario with a graphical user interface (GUI) of the system
or with a model thereof [3], [6]; (iii) typing the scenario in a
controlled natural language [7] and; (iv) a combination of the
last two, a method we call Show&Tell [8]. Figure 1 shows a
sample LSC scenario and some of the toolbars and views for
creating it.

In the current work we evaluate the LSCs language and
the available interfaces to create LSCs in an exploratory
experiment. Our research questions include (i) Is the natural
language interface quickly learnable and how do the various
interfaces to the LSC language compare? (ii) How does the
LSC language compare with Java (as an example of a com-
mon procedural language) in programming times and when
considering user preferences?

Recent years have yielded much research comparing pro-
gramming languages; this comparison can focus on different
aspects, ranging from the language features and capabilities,
the type of applications the language is useful for, to assessing
the human factor criteria as we do [9], [10]. This is done by
posing the question of how usable and learnable the language
is.

In the current work we focus on the scenario-based prop-
erties of the language that also allow the use of a natural
language interface, rather than only the visual aspect. Since
the LSC language is very different from procedural languages,
evaluation based on feature comparison, as is done for Fortran
or C [9], is less relevant. Another aspect is that the tool we
use for our evaluation, PlayGo [11], is still under development
and there are not many programmers who have adequate
expertise in using it. Therefore, evaluating the language using
the cognitive dimensions of notation framework suggested by
Green et al. [12] is worthwhile, but difficult for the time being.
Historically, claims of new languages being natural have been
made, and they are usually hard to prove [13]. In this sense,
the current research is preliminary and exploratory in nature.
One objective is to collect initial data for the available user
interfaces and use the results to improve the finer interfaces,
and another is to explore how naturalness or usefulness of the
LSC language.

II. LSCS USER INTERFACES

LSCs are based on sequence diagrams and include a set of
vertical lines called lifelines that represent the objects in the
scenario, and horizontal arrows called messages that represent
the interactions between the objects in the scenario; see Figure
1. Time flows from top to bottom, and there is a partial
order between the messages. Additional elements, such as
synchronization or alternative constructs can be added (see
[1], [3] for a more thorough description of the language).

The fact that LSCs are both visual and scenario-based
results in multiple ways of creating them, each with its own
advantages. We elaborate on the interfaces evaluated in the
experiment.

Editing. Since LSCs are visual, they can be created, like
many other diagram tools, by adding elements from a menu
or dragging and dropping elements from a toolbar as in
UML2Tools [14]. LSCs include more information than se-
quence diagrams; e.g., they include modalities of whether a
message may happen or must occur (cold or hot, respectively).
This means the user creating the messages must also set the
modalities. It also requires the user to tell the system when the
monitoring part ends and the execution starts for each scenario
(called prechart and main chart, respectively [1], [3]). We call
this first interface Editing and the main menu for it is shown
at the right-hand part of Figure 1.

Basic Play-In. A second way of creating LSCs is the Basic
Play-In, first defined in [3], [6]. It permits the user to play
with the non-behaving system or a mock-up thereof to create
the LSC, similar to programming by example (PBE) [15]. For
example, to add a message of “click” from the user lifeline to
the button lifeline, the user can demonstrate the operation by
simply clicking the button. The Basic Play-In method is very
natural and is made possible due to the scenario-based nature
of the LSC language; “demonstrate the scenario to create the
requirements”. However, it lacks the ability to demonstrate
what is cold or hot and additional non-interactive constructs,
e.g., conditions, which have to be specified in more standard
ways by menu selection. Play-In is different from most PBE
systems in that it is domain general and is used to specify
rules explicitly and not to infer rules from an example.

Natural Language Play-In (NL-Play-In). Recently, we
suggested a natural language play-in interface for LSCs (NL-
Play-In) [7]. This interface uses a context free grammar
to create a controlled natural language for LSCs. Clearly,
natural language may include multiple ways to specify the
same semantics, therefore the interface prompts the user to
resolve ambiguities when they exist. NL-Play-In combined
with the scenario-based nature of LSCs creates the possibility
to “program” by writing separate requirement sentences in
(controlled) English. It can also be spoken rather than written,
however, the motivation is different than the motivation of
languages such as spoken Java [16] developed to help pro-
grammers with repetitive strain injuries. While in spoken Java
it is necessary for the user to speak a programming language,
in NL-Play-In the user writes behavioral requirements rather
than a program. For example, to create the LSC in Figure
1, one can write “when the user clicks the start, the display
shows “Hello World””.

The NL-Play-In parser helps the person writing the require-
ments (who may not even be a programmer) connect between
the different requirements by making sure she refers to existing
objects and methods or realizes she is adding new ones.

The process includes a stage of grammatical parsing, with
the addition of asking the user to resolve any grammatical am-
biguities. This is followed by the analysis of the requirement,
using the model that serves as a knowledge base and assists in
helping the writer make the connection between the different
scenarios. The modalities (may/must), the prechart/mainchart
indication and the conditions, are added automatically by NL-

Fig. 1. PlayGo Environment, a sample LSC and the natural language that
created it. Also visible on the right is the experiment GUI and on the top the
editing menu.

Play-In based on the sentence, avoiding the need to handle
them explicitly as in the simpler interfaces. For additional
examples of the type of sentences accepted by the NL-Play-In
and elaborations on refer to [17].

Show&Tell (S&T). An additional method recently devel-
oped is Show&Tell (S&T) [8]. This method is a combination
of Basic Play-In and NL-Play-In. It is more than a naive
combination; rather, the play-in interaction is interpreted based
on the textual context. A similar combination of voice and
gestures has been used for managing graphical spaces with
“put-that-there” [18]. Show&Tell integrates text and GUI ma-
nipulation to assist in the creation of system requirements.
The user can enter her requirements textually but also use the
advantages of play-in to interact with the system, in the midst
of the requirement specification process, and create parts of
the sentence (and later the respective diagram) by interaction
without explicitly writing object names or actions.

The interaction is interpreted depending on the current parse
of the text. For example, if the text entered so far (prefix
text) is when and the interaction is <clicking the button>,
the suggested texts would include when <the user clicks the
button>. However when the prefix text is when the user,
the same interaction will add the suggestion of <clicks the
button> or <clicks>. Using the grammar parse state and the
interaction possibilities, the system will not suggest to add an
unreasonable addition that will not make sense grammatically.

III. EXPERIMENT

The experiment we carried out was meant to test which
of the LSC interfaces is preferable and hence more natural
to programmers. Our hypothesis was that NL-Play-In would
be preferable to Editing and Basic Play-In, and that the
combination of the two in (S&T) would be even better.

Since the language of LSCs and the scenario-based ap-
proach to programming is new to most programmers, we
want to also compare LSCs and a procedural language like
Java. In scenario-based programming the programmers think

TABLE I
PARTICIPANTS PREVIOUS EXPERIENCE

Java Exp. LSC exp. Java Exp. LSC exp.
1 > 5 years 2-5 projects 7 > 5 years Read only
2 1-2 years 2-5 projects 8 None 1 course project
3 > 5 years 2-5 projects 9 1-2 years 1 course project
4 > 5 years 2-5 projects 10 > 5 years 1 project
5 1-2 years Read only 11 1-2 years 1 course project
6 > 5 years > 5 projects 12 C/C++ Pen and paper LSCs

about each scenario separately and the execution mechanism is
responsible for handling the connection between the scenarios
(see [3], [4] for details regarding the execution). We believe
that this fact will make programming simpler and hypothesize
that LSCs will be easier than Java, especially when the GUI
and the model are given, and the task is to program only the
behavior of the system and not its objects.

A. Experiment Design

Participants. Our preliminary experiment involved 12 pro-
grammers. All the participants except three were familiar
with the LSC language, as they attended the 2009 graduate
course on executable visual languages described in [19] or a
similar course given two years later, which included the LSC
language. Those who did not attend the course were familiar
with LSCs by researching or working on some aspect of them.
Some had some experience with the PlayGo tool, but none
were experienced with the NL-Play-In method or the (S&T).
Table I summarizes the participants’ previous experience.

Tool and Tasks. The experiment was designed to test the
objectives using the PlayGo tool, an Eclipse based product that
implements the LSCs approach over Java classes using UML
and AspectJ [11]. Java was chosen as the procedural language
to test, since the tasks were performed in the same IDE and
using the exact same GUI and classes, while only behavior
among the objects was implemented in LSCs or Java.

The experiment included a part in LSCs and a part in Java
(three participants started with the Java part first and the others
started with the LSCs tasks first). Both parts included adding
unknown behavior to a simple game for teaching letters and
colors. An example of the required behavior for the tasks is
shown in Table II and the provided GUI is in Figure 1. Tasks
T1 and T2 were used in the LSC part only (except for two
participants in a pilot experiment that helped establish that
programming these in Java was unnecessary). The objectives
of the first two tasks were to teach all four interfaces to the
participants by requiring them to use all the interfaces and
later to compare the interfaces. In task T3 the participants
chose their preferred interface method in the LSC part, and
implemented a comparable requirement in Java.

During the experiment, participants were provided with
tutorials on all the interfaces and examples of natural lan-
guage sentences for a different example system. They were
encouraged to ask questions when they could not complete
a task or had problems understanding or using the interfaces.
They were also asked to explain the difficulty they encountered
when spending a long time on some task or part of it.

TABLE II
SAMPLE TASKS

T1 The LSC in Figure 1.
T3a When the game starts, the display shows a random letter and

displays a random color, the player is expected to click on
the button with the displayed letter, and on a button with
the displayed color. When he’s successful, the display show
”Success”.

T3b When the user succeeds the score is increased, if he fails the
score is decreased.

T3c The game is won when the score reaches 5, at which point
the display shows ”You Win” with a yellow background.

Evaluation. To evaluate the interfaces, we asked the par-
ticipants to time each of the tasks. In addition, we asked the
participants to answer questionnaires following each task.

B. Results

Task Times. When comparing times for creating the same
LSCs using the different methods in T1, Editing took the
longest time (7.6±2.9 minutes), and the other methods had no
significant difference (Play-In 5.3±3.5, NL-Play-In 5.25±3.6
and (S&T) 4± 1.7 minutes). A similar effect was found in T2
for those participants who completed all four interfaces (five
out of the twelve, due to time constraints of the experiment).

The Java T3 task took comparable time (29.6±8.8 minutes)
to the equivalent LSC T3 tasks (25.7 ± 5.5 minutes), for the
seven participants who completed all tasks in both Java and
LSCs. For those who started with Java, the time to completion
was longer, but not significantly different than those who
started with LSCs; this is reasonable considering that the LSC-
equivalent tasks were preceded by the two teaching tasks, T1
and T2 that introduced the system.

Considering that all programmers were experienced with
Java, and less so with LSCs, this suggests that the new
interfaces and language are natural and easily learnable.

Subjective Questions. When asked what their preferred
method was for creating LSCs for the third task, nine out of
twelve participants chose the NL-Play-In, and said it was the
quickest. Of those who chose a different method, one chose
the (S&T) for T1 and NL-Play-In for T2, and the other two
preferred Editing and Basic Play-In, while one mentioned she
did not understand what was expected from her, she did not
figure out the NL-Play-In, did not ask the experimenter for
help and gave up on the Java part almost completely.

According to the verbal interview the NL-Play-In felt quick-
est to almost all participants and did not require changing the
medium of entering data; i.e. they did not have to move their
hands away from the keyboard.

Regarding the LSC language in comparison to Java, ten out
of the twelve who completed almost all of the Java task wrote
that the LSC language was easier for the given task than Java.
One participant could not decide which was better, and another
chose Java as the easiest. The latter participant did not use the
NL-Play-In for the LSC T3 task, but rather the Editing and
Basic Play-In.

Several participants mentioned that the Editing method gives
rise to more typing errors, and two mentioned that (S&T)
could be useful to avoid typing an object name and to avoid

typos. Several mentioned that auto-completion in the NL-Play-
In would have made the task simpler for them. The information
for the auto-completion exists in part in the classes methods
and properties.

Analyzing the answers of the two participants who did
not prefer the NL-Play-In shows that typing natural text
that translates automatically into LSCs felt uncomfortable
because of “uncertainty how to phrase the sentences”, and both
mentioned that sentence templates or additional practice might
have made the task easier. They also mentioned that error-
fixing suggestions for NL-Play-In were insufficient. The other
participants learned pretty quickly the suggested templates
and were able to resolve most errors in T3. A representative
participant mentioned “I was getting confused with NL” in T2,
explained later his choice of using NL: “When you get used
to its English, it’s quite fast to use”.

Additional Observations. It seems that programmers who
are used to creating code by typing text appreciate a similar
interface even when creating diagrams. Second, switching
between the mouse and keyboard is not so convenient for
experienced programmers. Entering the diagram in edit mode,
selecting elements and then typing in element names or mes-
sages was more time-consuming, and required much switching
between interfaces.

Basic Play-In avoids some of the diagram clicking, but still
requires clicking on the GUI and in other cases editing. (S&T),
which we thought would benefit from the advantages of both
Basic Play-In and NL-Play-In, actually suffered from the need
to switch between them. Some of this may also have been
due to some performance difficulties of PlayGo during the
experiment. Most participants thought that NL-Play-In was
quickest and simplest for them, since it provided a means
of creating the entire diagram by a single action, many also
mentioned it was “fun”. Editing and Basic Play-In required
more specialization in LSCs by directly setting the modalities
and synchronization objects.

One of the key features of LSCs is that the order of events
matters in execution. In T3a, the order between the user
selecting a color and a letter was not mentioned specifically in
the requirements, which caused participants to avoid thinking
about it in the NL task, and thereby set a single order that was
accepted. In Java, many lines of code were required to check
that the player clicks on the two options, and the question of
order was discussed explicitly by three of the participants. In
the final implementation the order in the Java game did matter
for all but one participants. This we believe is linked to the fact
that LSCs can be underspecified, and allow the programmer
to avoid considering such issues unless explicitly required.

IV. CONCLUSION AND FUTURE WORK

This exploratory experiment demonstrates that the Natural
Language interface for LSCs is viable, quickly learnable and
most favorable to programmers than other interfaces. It also
confirms that the language of LSCs is comparable to Java
in ease of programming, for tasks similar to the ones given,
especially those requiring multiple GUI listeners.

One question we would like to test in the future is whether
the (S&T) method indeed suffered from the necessity to stop
typing in order to point and perform actions or rather that it
will never be quicker than typing for programmers who blind-
type, but it may be the best choice for non-programmers.

In the future it would be interesting to test the ease of use
of LSCs in more complex tasks, and for non-programmers.

ACKNOWLEDGMENT

The first-listed author would like to thank Jacob Kiwkowitz
and Shahar Maoz for their constructive comments. This re-
search was funded by an Advanced Research Grant from
the European Research Council (ERC) under the European
Community’s 7th Framework Programme (FP7/2007-2013). In
addition, part of this research was supported by The John von
Neumann Minerva Center for the Development of Reactive
Systems at the Weizmann Institute of Science.

REFERENCES

[1] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” Formal Methods in System Design, vol. 19, no. 1, pp. 45–80,
2001.

[2] D. Harel, “Can Programming Be Liberated, Period?” IEEE Computer,
vol. 41, no. 1, pp. 28–37, 2008.

[3] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[4] S. Maoz and D. Harel, “From Multi-Modal Scenarios to Code: Compil-
ing LSCs into AspectJ,” in SIGSOFT FSE, 2006, pp. 219–230.

[5] G. Alexandron, M. Armoni, and D. Harel, “Programming with the User
in Mind,” in Proc. of Psychology of Programming Interest Group Annual
Conf. (PPIG), 2011.

[6] D. Harel and R. Marelly, “Specifying and Executing Behavioral Re-
quirements: The Play-In/Play-Out Approach,” Software and Systems
Modeling, vol. 2, no. 2, pp. 82–107, 2003.

[7] M. Gordon and D. Harel, “Generating Executable Scenarios from
Natural Language,” vol. 5449, 2009, pp. 456–467.

[8] ——, “Show-&-Tell Play-In: Combining Natural Language with User
Interaction for Specifying Behavior,” in Proc. IADIS Interfaces and
Human Computer Interaction, 2011, pp. 360–364.

[9] N. M. Holtz and W. J. Rasdorf, “An Evaluation of Programming Lan-
guages and Language Features for Engineering Software Development,”
Engineering with Computers, vol. 3, pp. 183–199, 1988.

[10] J. Howatt, “A Project-Based Approach to Programming Language
Evaluation,” SIGPLAN Not., vol. 30, pp. 37–40, July 1995.

[11] D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo: Towards a
Comprehensive Tool for Scenario-Based Programming,” in Proc. of the
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE), 2010,
pp. 359–360.

[12] A. F. Blackwell and T. R. G. Green, “A Cognitive Dimensions Ques-
tionnaire Optimised for Users,” in Proc. of the 12th Annual Meeting of
the Psychology of Programming Interest Group, 2000, pp. 137–152.

[13] S. Markstrum, “Staking Claims: A History of Programming Language
Design Claims and Evidence: A Positional Work in Progress,” in
Evaluation and Usability of Programming Languages and Tools, ser.
PLATEAU ’10, 2010, pp. 1–5.

[14] “Eclipse UML2 tools,”
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

[15] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,
B. A. Myers, and A. Turransky, Eds., Watch What I Do: Programming
by Demonstration. Cambridge, MA, USA: MIT Press, 1993.

[16] A. Begel and S. Graham, “Spoken programs,” in IEEE Symp. on Visual
Languages and Human-Centric Computing, 2005, pp. 99 – 106.

[17] “Natural language example in playgo,”
http://www.weizmann.ac.il/mediawiki/playgo/.

[18] R. A. Bolt, “‘put-that-there”: Voice and gesture at the graphics interface,”
SIGGRAPH Comput. Graph., vol. 14, no. 3, pp. 262–270, Jul. 1980.

[19] D. Harel and M. Gordon-Kiwkowitz, “On Teaching Visual Formalisms,”
IEEE Software, vol. 26, pp. 87–95, 2009.

Semantic Navigation Strategies for Scenario-Based Programming

Michal Gordon and David Harel
Dept. of Computer Science and Applied Mathematics

The Weizmann Institute of Science
Rehovot, Israel

Email: {michal.gordon, dharel}@weizmann.ac.il

Abstract—The scenario-based approach to specification and
programming uses powerful extensions of sequence diagrams,
such as LSCs (live sequence charts), to model system behavior.
Previous work in this area presents interesting challenges
related to the scalability of the approach and to better tool
support for analysis, execution, and comprehension. Here we
suggest new semantic-rich ways of viewing sequence diagrams
and LSCs for better comprehension of both a single large chart
and a full multi-chart specification, in a variety of software
engineering tasks. Our method uses weighted messages to
create a semantic order that enables semantic zooming and
scrolling of different parts of a chart, providing visual hints
about context.

Keywords-Live Sequence Charts; Sequence Diagrams; Se-
mantic Zoom; Program Navigation; Program Comprehension;

I. INTRODUCTION

LSCs (live sequence charts), a new scenario-based pro-
gramming language, and sequence diagrams, a popular
scenario-based specification language, are both visual for-
malisms that present major challenges to usability. In the
case of LSCs, these challenges are made even more acute
due to the multi-modal features of the language and the
dependencies between different charts. These features are
also found in some other programming paradigms. The
challenges include scalability of the presentation, and navi-
gation strategies for comprehension and debug. In this paper,
we suggest ways to address some of these challenges by
applying a new method of semantic navigation to LSCs.
Specifically, we define new zooming and scrolling methods
for LSCs based on custom weights for diagram elements.
Our methods are described for LSCs but can also apply to
sequence diagrams, and they can be extended to textual code.

Our custom weights are generated automatically, depend-
ing on the task at hand, or manually by the user, and they
end up creating a semantic order on the elements of an LSC.
This order is different from the spatial order of the elements
in the chart, and we define it to assign higher weights to
elements that are semantically “more relevant” to the current
task. For example, in comprehension, elements that appear
only once in the chart may provide more information than
ones that repeat.

The order allows semantic zooming and panning on
a diagram, while some additional definitions we provide
maintain the context, abstracting unnecessary information

to assist comprehension in the specific task. More generally,
our work can be viewed as the application of the concept
of semantic zoom, adapted from information visualization
and user interface design, to the programming domain in
general. We demonstrate the approach and show the new
visual notations for the scenario-based visual formalism of
LSCs implemented in the play-engine tool [1].

II. BACKGROUND

Live sequence charts, LSCs, are used for specifying multi-
modal scenario-based behavior [2], [1]. An LSC describes
inter-object behavior, i.e., behavior between objects, captur-
ing part of the interaction between the system’s objects, or
between the system and its environment. LSCs are an enrich-
ment of message sequence charts (MSCs) [3] and the UML
sequence diagrams [4], in which objects are represented
by vertical lifelines and messages between the objects are
visualized as horizontal arrows, with time advancing from
top to bottom, as in Figure 1. Additions include subcharts,
which can contain alternative statements and messages,
allowing one to specify different behavior under different
conditions, as well as loops and synchronization points along
the lifelines.

LSCs add modalities of behavior to MSCs and sequence
diagrams by, e.g., distinguishing possible (cold) from nec-
essary (hot) behavior (the latter is where the term “live”
comes from), and can also express forbidden behavior, i.e.,
scenarios that are not allowed to occur. A prechart fragment,
represented as a blue dashed hexagon as in Figure 1, at
the beginning includes cold messages, whose occurrence
triggers the main part, depicted as a solid black rectangle
as in Figure 1, of the LSC. To execute LSCs, the play-out
mechanism or its more powerful variants [5], [6] monitors
at all times what must be done, what may be done and
what cannot be done, and proceeds accordingly. Although
the execution does not result in optimal code, nor is the
executed artifact deterministic (since LSC can yield an
under-specification) it, nevertheless, leads to a complete
consistent execution of the LSC specification, if one exists.
The details of play-out are outside the scope of this paper,
and are described in detail in [5], [1].

LSC is an example of a visual formalism that is suffi-
ciently novel so as to render scalability of presentation and

Figure 1. The top half of the full LSC, with readable messages, part of a larger LSC

tool support for analysis a challenge that has not yet been
fully addressed. Several pieces if work have addressed the
issue of viewing large sequence diagrams (SDs) [7], [8], but
they do not address issues of various tasks of comprehension,
nor do they apply to the considerably more semantically-
complex case of a set of diagrams, as when dealing with
a full LSC specification. They also lack the ability to deal
with the multi-modality of LSCs and the semantical issues
these raise. These approaches also seem to require much
intervention on the user’s side, and little to assist him/her in
filtering the information wisely, as would be expected from
a truly semantic method of zooming.

Semantic zoom has been used in many fields of informa-
tion processing. The idea is to balance details and context
when displaying information. However, when working with
LSCs, there is no clear definition of what the important
details are. Here we propose a method for using custom
weights, which make it possible to navigate between level
of detail in LSCs. The weights are generated to correspond
to different tasks, and visualization methods are suggested
to allow semantic zoom and navigation.

The current paper centers around LSCs, yet many of the
ideas can be used to also contribute to MSCs and UML
sequence diagrams.

III. DEFINING SEMANTIC ORDER

When setting up a system for carrying out semantic zoom,
some form of the relevant details has to be carefully defined,
to allow for navigation between different levels. Many pro-
gramming languages, and LSCs among them, lack explicit
definitions of such information. In our case, we found that
the additional information would best come in the form of
custom weights on the elements of the chart, thus creating a
semantic order. When the language supports hierarchy, this
information, which induces an order on element-sets, can be
integrated with the custom weights. However for navigation
to be continuous we require an element-wise semantic order
that includes all the elements.

Most programs, including LSCs, can set as the default se-
mantic order the textual/spatial order of the code. However,
more meaningful orders, which do not necessarily coincide
with the natural order in the program or diagram, can be
generated by the user or computed automatically, depending
on the task at hand. We shall discuss some suggestions for
semantic orders in section VI, and we refer to an LSC with
a semantic order as a weighted LSC.

More formally, a custom weight w(mi) is defined for
each message mi of the LSC. Since some elements of an
LSC contain others, as in, e.g., subcharts (fragments in UML
terminology), the message weight induces a weight for each
subchart as the sum of the weights of the messages in the

subchart, w(si) =
∑ {w(mi)|mi ∈ si}, and a weight on the

lifelines as the sum of the weights of messages connected
to the lifeline, w(li) =

∑ {w(mi)|mi ∈ cover(li)}. The
custom weights define a semantic order on the elements
of the LSC, and ties (equal weights) can be resolved by
reverting to the spatial order in the chart.

Consider the LSC in Figure 1. First, the vertical order
induces higher weights for messages higher in the vertical
dimension, so that message SetCash has higher weight
than message Beep. Second, the horizontal order induces
higher weights for messages that are left of other messages
(higher in the horizontal dimension) and on the same ver-
tical line, hence message SetCash, which is to the left of
message Show(take your money), has higher weight. (In
the figure they are not on the same vertical line due to
tool limitations but they could be on the same vertical
line, since there is no order between them semantics-wise.)
However, message Show(take your money) is also higher
than Beep and therefore we get the order w(SetCash) >
w(Show) > w(Beep). Section VI describes how the weight
of an element can be chosen to reflect the information it
provides relevent to the task at hand. Thus, the semantic
order will allow a viewer to focus on more relevant elements
while ignoring others.

IV. VISUAL NOTATIONS

A. The placeholder

Given a particular semantic order to be used (which does
not necessarily depend on the “geography” of the diagram),
we have to find ways to support the kinds of navigation
we want, such as zoom in, zoom out, and pan/scroll at
a specific zoom level. We do this by hiding some of the
elements, and in LSCs this will apply directly to a message,
a subchart, or a lifeline. Hiding an element can be performed
anywhere, and since it means removal of information, we
add a placeholder instead to provide context information
and to hint at the fact that data has been hidden. A specific
“look” for the placeholder must be devised, which should
indicate the location of the missing elements and include
some coding that means for capturing the sum of weights
of the elements it replaces. In LSCs, the placeholder for a
removed message is depicted as horizontal gray lines at the
appropriate location. A vertical gray line holds the place for
a removed lifeline. The weights are coded by the level of the
grayscale color of the placeholder, thus hinting at the amount
of information being hidden. When an element is hidden and
its weight is added to a specific placeholder, we refer to the
element as being consumed by the placeholder. Adjacent
placeholders are placeholders that are immediately next to
each other, with no interfering elements between them. If, in
the process of adding a placeholder at a particular location
it turns out that there is already one in an adjacent location,
the two are merged into one, and the weights are summed

Figure 2. Placeholders not merged due to subchart separation

(and the darkened color will reflect the added weight). Struc-
tural containers impose some limitation on the placeholder
merge algorithm. Subcharts in LSCs, for example, cannot
be merged in a naı̈ve way, since doing so would result
in removing structural information. A placeholder inside a
subchart can replace the subchart completely after it has
assumed the weight of all elements in the subchart. Only
then can the placeholder merge with placeholders outside
the boundaries of the subchart, thus leaving the structural
information intact for as long as necessary. This can be
seen in the example in Figures 2 and 3 that show the LSC
before and after the hiding operation of a single message
that causes a merge operation cascade for four placeholders.
The algorithm for hiding elements and merging placeholders
is given in the next section.

B. Last change marker

Our navigation allows continuous zooming and scrolling
using the scroll wheel (the former also requires holding
down the ctrl button). This means that consecutive zoom
/ scroll steps may be taken but since the semantic order
does not depend on ’geography’, there is no guarantee that
the elements being shown or hidden are in adjacent spatial
locations. We therefore mark the last change at each step,
using a special last change marker and focus on it at each
step. In LSCs, we use a red circle; see Figure 2. When
the last step added an elements, the last element added
is marked as in Figure 2. When last step hid an element,
the placeholder that consumed the element, is marked; see
Figure 3. When scrolling we mark the added element, or
the placeholder that changed due to the hidden element,
depending on the direction of the scrolling.

We have also found that it is helpful to provide a clear
indication to the viewer when the code/diagram is shown
at some zoom level that is not the regular full-detail one.
In LSCs we use a light green background for all zoomed
diagrams, rather than the normal white.

Figure 3. A merged placeholder

Figure 4. The full LSC zoomed

C. Semantic navigation

1) Zooming: During zoom-out, less information is dis-
played at each step and the level of detail decreases. There-
fore, the element with the least weight is hidden and is
replaced by a placeholder. This, in effect, leaves the most
informative elements on the diagram, and they will be the
last to be hidden.

During zoom-in, more information is displayed at each
step and the level of detail increases. Therefore, at each step
the hidden element with the largest weight is added and its
placeholder is updated accordingly.

This principle can be applied to vertical elements or
horizontal ones (i.e., lifelines) when appropriate. In our
implementation for LSCs, the zoom is applied to the vertical
elements.

In applications that have a limited area available for
drawing the diagram, the principle can be used to find the
right level of zoom for the area. The area can induce the
maximal number of vertical or horizontal elements that can
be displayed. We start by hiding all elements and then adding
the most informative elements one after another, counting
also the number of placeholders that are required at each
step to find the optimal zoom level.

2) Scrolling: When viewing a chart at a specific zoom
level, there are cases (e.g., when the chart fills the entire

available “canvas”) that call for allowing the user to scroll
and see adjacent details presented according to the semantic
order.

In such cases, we allow the user to scroll with a fixed-
sized window over the ordered set of elements. For each
scroll operation, the elements in the window are shown and
all others are hidden and are replaced by placeholders.

3) Filtering: We can easily allow the application of a
filter of a specific weight threshold. All elements with
custom weight below the threshold will be hidden (and
replaced by appropriate placeholders). This will allow the
user to focus on the more relevant information.

The filtering operation is essentially setting an exact zoom
level, but is carried out without having to go through the
continuous changing of the level.

V. THE NAVIGATION ALGORITHM

We now describe the navigation algorithm for hiding
weights and merging placeholders. It can be applied inde-
pendent of the calculations for the custom weights, and has
been implemented in the play-engine tool. The next section
discusses different ways to calculate the weights.

Here we view an LSC as a structure consisting of a tree
T of vertical elements taken from the following two sets: a
set of subcharts S and a set of messages M listed by their
‘geographical’ order. The LSC also contains a list of lifelines
L. For simplicity, no two vertical elements can be at the same
vertical location and therefore each element can be replaced
by a single placeholder. Subcharts can have child elements
of type subcharts and messages, while messages cannot have
child elements (thus, child(e) = null for e ∈ M). Each
message m or subchart s has a parent element in the tree.
Each message m and subchart s has a non empty cover
set of lifelines from L that it is connected to. A message is
connected to at most two lifelines.

Since the basic element of an LSC is the message, the
navigation is in the vertical dimension and it affects the
horizontal elements; e.g. if all the elements connected to a
lifeline have been removed, the lifeline will also be removed.

In the zoomed LSC, placeholders from a set P can
be added as leaves in the tree. A placeholder p has a
list of contain elements from S ∪M that it consumed.
Placeholders are added only in the vertical dimension but
could also have been added for removed lifelines.

The input to the algorithm is an LSC {T, L} with weights
calculated as in section III, and the output is a zoomed LSC
{T ′, L′}. Let E be a list of the messages in T sorted in
increasing order by weight (m1, ...,mn), ; thus, w(mi) ≤
w(mi+1).

For navigation, a copy of the original LSC is created, and
at each step the tree structure is updated, and then drawn.
The order of child elements in the tree determines their
vertical order. If two elements i and j have the same parent

procedure: MergePlaceholders(element)
foreach c ∈ child(element) do

MergePlaceholders(c)
for i ←0 to length(child(element)) - 2 do
e0 ←child(element,i) //gets i’th child of element
if e0 is a placeholder
e1 ←child(element,i+1)
if e1 is a placeholder //merge placeholders
weight(e0) ←weight(e0) + weight(e1)
contain(e0) ←contain(e0) ∪ contain(e1)
remove e1 from element //decreases number of elements
i ←i− 1 //loop increases i, decrease since element removed

elseif e0 is a subchart and length(child(e0)) = 1
and child(e0,0) is a placeholder

e0 ←child(e0) //replace subchart e0 by its child placeholder
i ←i− 1

Table I
THE MERGE PLACEHOLDER ALGORITHM

and i is listed before j, then i will be drawn above j in the
vertical dimension.

For zoom-out, we create a copy {T ′, L′} of the original
LSC and at each zoom-out step i = 1, ..., n, the procedure
RemoveMessage(mi) is called. In RemoveMessage(mi), the
message mi is removed from T ′ and is replaced by a place-
holder p with parent(p) ← parent(mi), w(p) ← w(mi).
w(l) for l ∈ cover(mi) is decreased by w(mi) and if
w(l) = 0, the lifeline l is removed from L′ and is not drawn.
Then the procedure MergePlacholders(T ′) (see Table I) is
called recursively, first on all child elements and than on
their parent elements, guaranteeing that subchart elements
will also be merged.

For zoom-in, if the zoom-out step is some i > 1 then
AddMessage(mi) is called for i ← i − 1. In AddMes-
sage(mi), let p = {p ∈ P |mi ∈ contain(p)}, mi is added
to parent(p) before p, the placeholder’s weight is updated
w(p) = w(p) − w(mi) and if w(p) = 0 then p is removed
from T ′. For all lifelines l ∈ cover(mi), if l /∈ L′ then l is
added to L′, and w(l)← w(l) +w(mi). If mi is a child of
a subchart in T that is contained in p, then mi is not added
directly; rather, the subchart is added and mi is added as its
child.

At a specific zoom-out level, for scrolling up (respectively,
down), at each step the message with the smallest index mi

is removed (resp., added) and the message with the largest
index mj is added (resp., removed) using the RemoveMes-
sage and AddMessage procedures, and then MergePlace-
holders is called.

VI. MEANINGFUL SEMANTIC ORDERS

The semantic order is determined by weights that are
calculated automatically before navigation as a consequence
of the task at hand. These weights can additionally be
modified manually by the user, but in most cases it is
preferable to calculate them automatically. The computation
may take time but it is performed offline, and therefore

does not affect the user’s experience of navigation. This
section discusses some possible semantic orders and their
applicability.

The spatial order is inherently part of the diagram. It has
a clear temporal meaning, which induces a default semantic
order for navigation.

Another order mentioned earlier is that created between
groups of messages using lifeline composition, as suggested
in [9], or class hierarchy, as described in [10]. In compo-
sition, a lifeline is composed of additional lifelines defined
in a separate diagram. In hierarchy, a lifeline can also be
composed of other lifelines (but the semantics is different,
of course). Ties within element-sets can be resolved using
the spatial order.

The other orders we suggest are heuristic, and depend on
the task at hand.

A. Interdependencies for comprehension

One heuristic semantic order connected to program com-
prehension is related to the dependencies between mes-
sages. This order is the result of applying some function
on statistics of the elements to calculate custom weights
automatically. For statistics, the definition of unification
is used. Roughly, when there exists two messages with
the same method and connecting the same objects, but in
different LSCs, they can be unified. The formal definition
can be found in [1] and can be applied also to messages in
the same LSC.

For a message m, we define the following local and
global statistics. Local statistics depend on the single LSC:
let Ul(m) be the number of messages unifiable with the
message local to the LSC. Let Cl(m) be the causal weight,
which is the fraction it constitutes of the prechart. A message
that does not appear in the prechart has weight 0, and that
of a message that is the only one in the prechart (i.e., its
occurrence alone triggers the LSC’s main chart) is 1.

Global statistics depend on the entire specification; that is,
the full set of LSCs. Let Cg(m) be the number of messages
that can either be caused by m (e.g., m is in a main chart
and the unifiable messages are in a prechart), or are causal
to m (e.g. m is in a prechart, and the unifiable messages are
in a different main chart), Ug(m) the number of messages
unifiable with m that are not causal or caused by m.

Our current implementation in the play-engine tool sup-
ports only this semantic order, and we have used equal
weights for the local and global components. These weights,
wl = 0.5 and wg = 0.5 are parameters that may be changed
according to user preferences.

Using the aforementioned statistics, the final custom
weight for a message m is the real number: w(m) =
wl(

1
1+Ul(m) + Cl(m)) + wg(

1
1+Ug(m) + Cg(m)).

The Ul(m) and Ug(m) components make the weight of
messages that appear once higher than those that repeat,
both locally and globally. The causal components, both local

Cl(m) and global Cg(m) add to the weight of messages
that cause changes in the same LSC or between LSCs. In
a way this is counterintuitive to indexing methods that give
higher weights to repetitive elements. However, it makes
sense when the task at hand is comprehension, or, more
specifically, comprehending the interdependencies between
different LSCs.

Testing this heuristic on sample specifications shows that
messages that are used frequently, such as clock ticks
or enabling and disabling of buttons, tend to have lower
weights, and are indeed less interesting to the reader. See,
for example, part of a large LSC from an ATM sample
specification in Figure 1 and how when zoomed, the tick
messages are hidden before other messages in Figure 4.

B. Semantic order for debug

Another semantic order that plays a significant role in
software analysis and debugging is the order of execution.
In languages such as LSCs this is not identical to the
textual/spatial order. LSCs are of inherent potential nondeter-
minism, with a partial order existing between messages in a
single LSC and subtle behavioral and temporal dependencies
between multiple LSCs, with their enabled and forbidden
events [2]. And in smart play-out, the execution mechanism
plans a series of steps ahead of time [5], so that the notion
of order of execution is not a trivial matter that can be read
from the text/chart.

When the task is debugging, and the focus of the user is
on the recently executed message, the semantic order can
change with each debug step to show previously executed
messages and future enabled messages with higher weights.
This will allow the user to watch a smaller window of
proximal messages not necessarily in the spatial sense but in
the executable sense. The ability to watch a partial LSC in a
small window can clear an area for displaying other relevant
LSCs, thus allowing the user to see how the LSCs interact.
We have not implemented semantic zoom for debug and we
leave the details for future work.

C. Generation order

Another order, which requires additional information that
is available during diagram generation, is the order the user
chose to add the elements during programming. This order
has the value of displaying the user’s cognitive process,
and how certain elements were added later than others. In
many cases, the later additions are the low-level details, or
sometimes ‘patches’ to fix holes in the specification. This
semantic order is relevant for comprehension and can be
accumulated during the programming process (play-in with
LSCs, for example).

D. User selection

A user may want to directly affect the semantic order, for
example, in LSCs assigning more weights to some messages,

and less to others. As in other interactive works [7], allowing
the user to interact with the diagram and specify the details
he/she is interested in helps navigation, this order can be
combined with a default order to avoid requiring the user
to assign weights to all the elements and to help the user
avoid excessive interaction. Using the placeholder element
for interaction, the user can also choose to expand all
elements consumed by a placeholder by double-clicking it,
or to extract the single highest weighted element, depending
on the tool implementation.

VII. APPLICATIONS TO CONVENTIONAL PROGRAMMING

Reverse engineered sequence diagrams are widely avail-
able and are automatically generated by commercial and
research tools. In many cases these diagrams are very
large and hard to read and navigate. Applying a semantic
order and using the suggested algorithms for zooming and
scrolling can improve the usability of these diagrams.

Our approach may also be useful in navigating textual
code. Although textual code is spatially ordered by lines,
there is much information filtering that can be applied to
lines of code. Most editors today allow the ability to collapse
lines of code that are part of the same function or class.
However, code lines have similar dependencies to those of
LSC messages. If we replace unification by calls to the same
function, we can create a weight function for each line that
will provide information on how much this line is repetitive
within a code project or a class. This information may be
valuable when comprehending code and debugging.

Once the information exists, one can even debug only
lines with an information level higher than a certain thresh-
old, hiding other code lines using the suggested placeholder
algorithm. For example, one can hide code lines that call a
logger or deal with a database, that often repeat throughout
the code, although they do not appear in consecutive lines.

VIII. RELATED WORK

The idea of semantic zoom and zoomable user interfaces
is fundamental to navigating large information spaces [11],
and has been addressed also in the domain of structured
textual code [12] and in model engineering [13], [7], [14].
In [12] a degree of interest (DOI) is defined, to allow fisheye
view of information, a view that distorts information in order
to allow focusing on some details rather than others. The
idea is applied to textual code based on its tree structure.

Some of the ideas discussed here have been previously
researched for textual code. Structure of textual code has
been used in [15] for better comprehension and for naviga-
tion between components. Different indexing strategies, such
as statistical measures for code parts [15] or social tagging
by experts [16], have been used for better navigation in large
textual code projects.

The navigation problem becomes more difficult when
dealing with complex graphical models that present layout.

Challenges that do not exist when reading sequential text
[14].

Many navigation solutions exist for class diagrams [13],
which have been researched more extensively than LSCs or
SDs, and include hierarchies that are exploited for naviga-
tion.

More recent work also address navigating and zooming
for the full set of UML diagrams, [8], [14]. In [8], various
diagrams are connected by special arrows for quick naviga-
tion and additionally, semantic zoom has been suggested for
interrelationships between elements from different diagrams
and for displaying the coarser details of a single diagram.
The work in [8] also discusses sequence diagrams briefly,
mentioning for example focusing on selected lifeline titles.
A similar work that focuses on multiple UML diagrams
[14] acknowledges that in UML multi-diagram models are
loosely coupled and are therefore hard to navigate. Novel
ways have been suggested to integrate different modeling
aspects (such as structure, data and behavior) into a coherent
model that allows definitions for navigations. In these works,
sequence diagrams are treated as one among the many
diagrams available in UML.

Recently, sequence diagrams have been acknowledged as
important in reverse engineering [7] and novel ways have
been suggested to view large diagrams using interactive
zooming. They include interactively focusing on parts of
the diagram while the context is displayed as small low
resolution image and as collapsed fragments in the zoomed
diagram. These methods can also apply to live sequence
charts, yet they require extensive user interaction.

In the current paper, LSCs are considered as inter-
connected scenarios in an executable specification and se-
mantic zoom is discussed for navigation and comprehension.
New methods for displaying missing information and con-
text are suggested, and less interaction is required from the
user when navigating. The formulation of custom weights
enables the creation of new detailed orders that are not part
of the single LSC, but can provide additional information
for different tasks.

IX. CONCLUSIONS AND FUTURE WORK

The main contribution of the current work is to allow
semantic navigation in LSCs, a form of visual programming
language that does not have a trivial level of details for
zooming or navigation.

Nevertheless, some of our ideas can extend beyond the
domain of LSCs. Specifically, the idea of creating a semantic
order that provides information not found in the original
order of the artifacts might be of more general use. Also
the idea of creating some form of placeholder for abstracted
information, that can hint at the amount of abstracted in-
formation for non-continuous regions and merge with other
placeholders depending on the ‘geography’, may be useful
for other environments. For example, it is possible to use

the notion of placeholder to abstract states in a statechart,
if a different visual notation, such as a dot placeholder, is
used, and the rule to merge placeholders is adjusted so that
there would be a straight line connecting two placeholders,
in order for them to merge.

We believe our work can also contribute to the de-
pendency graph between LSCs, when navigating a large
specification, as described in [17], and that it can assist in
viewing connected LSCs side by side for simulation and
debug. Although it is hard to assess how much the new
method helps in navigation, we did run a cognitive walk
through a large specification of an ATM that also included
some large LSCs (Figure 1) to support our claims that the
method can assist navigating.

When encountering a large LSC, it is necessary to scan
it, sometimes completely and all the way to its end, in order
to understand what it ‘says’. In the context of LSCs, it is
often necessary to scan multiple LSCs to understand how
they interact. Our method provides zoom and scrolling that
are widely used when reading information that is too large
to fit on a screen. The user receives feedback that he/she is
viewing parts of the full diagram from the placeholders, and
also has knowledge about where the missing information
is hidden so that he/she can form a mental model of the
sequence of events that occurred, rather than having to scan
the full document.

We have implemented the current ideas for the interde-
pendencies semantic order. We plan to create a tool that will
work also for UML SDs and will allow interaction and user
defined weights. We would also like to evaluate our method
in visualizing debug and simulation runs, operations that do
not scale well for large LSCs or for a large specification, at
the current time.

ACKNOWLEDGMENT

The authors would like to thank Shahar Maoz for pre-
liminary discussions on some of the ideas in this work
and for his helpful comments. We thank Liat Nakar for
contributing her large LSC specification of an ATM system.
We also appreciate the assistance and helpful suggestions
of Itai Segall and Smadar Szekely. The first-listed author
would like to thank Goren Gordon for his support, general
and specific.

REFERENCES

[1] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-
Verlag, 2003.

[2] W. Damm and D. Harel, “LSCs: Breathing Life into
Message Sequence Charts,” Formal Methods in System
Design, vol. 19, no. 1, pp. 45–80, 2001. [Online]. Available:
citeseer.ist.psu.edu/damm01lscs.html

[3] ITU: International Telecommunication Union, “Recommen-
dation Z.120: Message Sequence Chart (MSC),” Technical
report, 1996.

[4] UML, “Unified Modeling Language Superstructure, v2.1.1,”
Object Management Group, Tech. Rep. formal/2007-02-03,
2007.

[5] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart Play-
Out of Behavioral Requirements,” in Proc. 4th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD’02).
Springer-Verlag, 2002, pp. 378–398.

[6] D. Harel and I. Segall, “Planned and Traversable Play-Out:
A Flexible Method for Executing Scenario-Based Programs,”
in Proc. 13th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07), 2007, pp.
485–499.

[7] R. Sharp and A. Rountev, “Interactive exploration of uml
sequence diagrams,” in Proc. of the 3rd IEEE international
Workshop on Visualizing Software For Understanding and
Analysis (VISSOFT’05), 2005.

[8] M. Frisch, R. Dachselt, and T. Brückmann, “Towards seam-
less semantic zooming techniques for uml diagrams,” in
Proc. of the 4th ACM symposium on Software visualization
(SoftVis’08), 2008, pp. 207–208.

[9] Y. Atir, D. Harel, A. Kleinbort, and S. Maoz, “Object compo-
sition in scenario-based programming,” in Proc. Fundamental
Approaches to Software Engineering, 11th International Con-
ference, (FASE’08), 2008, pp. 301–316.

[10] D. Lo and S. Maoz, “Mining hierarchical scenario-based
specifications,” in 24th IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE’09), 2009.

[11] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot, “Context
and interaction in zoomable user interfaces,” in Proc. of the
working conference on Advanced visual interfaces (AVI’00),
2000, pp. 227–231.

[12] G. W. Furnas, “Generalized fisheye views,” SIGCHI Bull.,
vol. 17, no. 4, pp. 16–23, 1986.

[13] A. Egyed, “Semantic abstraction rules for class diagrams,” in
Proc. of the 15th IEEE International Conference of Automated
Software Engineering (ASE’00), 2000, pp. 301–304.

[14] T. Reinhard, S. Meier, R. Stoiber, C. Cramer, and M. Glinz,
“Tool support for the navigation in graphical models,” in Proc.
of the 30th international conference on Software engineering
(ICSE’08), 2008, pp. 823–826.

[15] J. I. Maletic and A. Marcus, “Supporting program compre-
hension using semantic and structural information,” in Proc.
of the 23rd International Conference on Software Engineering
(ICSE’01), 2001, pp. 103–112.

[16] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Waypoint-
ing and social tagging to support program navigation,” in
Extended abstracts on Human factors in computing systems
(CHI’06), 2006, pp. 1367–1372.

[17] D. Harel and I. Segall, “Visualizing inter-dependencies be-
tween scenarios,” in Proc. ACM Symposium on Software
Visualization (SOFTVIS’08), 2008, pp. 145–153.

Programming in Natural Language ?

Michal Gordon and David Harel

The Weizmann Institute of Science, Rehovot, 76100, Israel
{michal.gordon,dharel}@weizmann.ac.il

Abstract. We describe the idea of programming by writing natural lan-
guage requirements in order to bridge the gap between system require-
ments and a final executable system. We claim that formal structured
natural language requirements can serve as the mean and the end to
programming the behavior of reactive systems, using fully executable
languages such as live sequence charts (LSC). We use natural language
processing methods and a dialog system to resolve and disambiguate
English requirements and translate them into the language of LSC. Fur-
thermore, we describe show & tell, where the user can specify the be-
havior by using natural language interspersed with play-in, the method
of constructing LSCs by interacting with the final system or a mock-up
thereof. The method is domain-general and uses a dynamically growing
grammar, assists in building the underlying model of the system and
leads to direct execution. We demonstrate the approach on various reac-
tive systems, and have also evaluated it as a new programming method.

1 Introduction

The language of live sequence charts (LSCs) [8] triggered the grand challenge of
“liberating programming”, in which more people will be able to define system
behavior easily by making programming more similar to how people think [20].
LSCs are an executable visual formalism that describes natural “pieces” of be-
havior in a manner similar to telling someone what they may and may not do,
and under what conditions. The question we address here is: can we capture the
desired behavior of a system in a far more natural style than is common? We
want a style that is intuitive and less formal, and which can serve both as the
system’s behavioral specification and as its final executable artifact, bridging the
gap between requirements and implementation.

Most system requirements are short and fragmented, and require further
analysis in order to tie them together; in this sense they can be considered ap-
propriate for automatic execution using LSC. The written form of requirements
attempts to maximize clarity and reduce ambiguity in order to avoid back and
forth changes during the development cycle. Therefore, analyzing the natural
language (NL) of requirements and assuming they can be written more formally

? An early abridged version appeared in Proc. of the 10th Int. Conf. on Computational
Linguistics and Intelligent Text Processing (CICLing’09), Springer-Verlag, 2009, pp.
456-467.

2 Gordon and Harel

with the help of tools is a reasonable direction to pursue. In order to simplify
this process, the method proposed, termed natural language play-in (NL-play-
in) assists the technical writers of the requirements (e.g. requirement engineers),
using a parser and a dialog system that guide them in writing structured NL
requirements. While adding the behavioral requirements, the method also helps
the engineer build the system model: the objects, the classes, and the methods,
that are relevant to the system. As we shall see, the result is fully executable.

In the past, natural language processing (NLP) has been used in computer-
aided software engineering (CASE) tools to assist human analysis of the re-
quirements. One use is in extracting the system classes, objects, methods or
connections from the natural language description [39, 3]. Another is applying
NLP to use case description in order to create simple sequence diagrams with
messages between objects [43], or to assist in initial design [9]. NLP has also
been used to parse requirements and to extract executable code by generating
object-oriented models using two-level grammar (TLG) [4]. Additionally, con-
trolled natural language (CNL) translations have been used by the Attempto
language for reasoning [10, 11]. However, it is important to realize, that the re-
sulting code is not scenario-based; in most cases it describes the behavior of
each object separately under the various conditions, and is usually limited to
sequential behavior. The resulting object-oriented (OO) artifact is focused on
object-by-object specification rather than being directly aligned with the re-
quirements, as are LSCs.

To be able to specify behavior in a natural style, a simple way to specify pieces
of requirements for complex behavior is needed, without having to explicitly, and
manually, integrate the requirements into a coherent design. This natural style
is the basis of behavioral programming and the LSC language.

In [18, 26], the mechanism of play-in and play-out were described as means
for making programming more practical for lay-people. In the play-in approach,
the user specifies scenarios by playing-them-in directly from a graphical user
interface (GUI) of the system being developed. The developer interacts with
the GUI that represents the objects in the as-of-yet behavior-less system, in
order to show, or teach, the scenario-based behavior of the system by example
(e.g., by clicking buttons, changing properties or sending messages). As a result,
LSCs are generates automatically, and on the fly. The play-in method allows to
demonstrate parts of the behavior, and some facets thereof are similar to other
systems for programming by demonstration (PBD) [7].

In the play-out mechanism, multiple scenarios, or behavior fragments, are
integrated into a fully executable artifact. The original play-out algorithm is
described in [26]. Since the system behavior is defined by an incremental set of
separate behaviors, it is usually underspecified, and may contain contradictions.
Over the past few years, advanced algorithms for executing the set of LSC sce-
narios have been developed, employing synthesis [30], planning algorithms [19]
and model-checking [22] to help alleviate this problem. Here we ignore the issue
of how to execute the resulting LSCs, focusing instead on the methods to create
LSCs.

Programming in Natural Language ? 3

Our work describes NL-play-in, a natural language interface to LSCs, based
on the classical play-in method, augmented by natural language processing of
the specifications. By its nature, the LSC language is closer to the way one
would specify dynamic requirements in a natural language. We suggest to take
advantage of this similarity, translating natural language requirements directly
into LSCs, thus rendering them fully executable. Accordingly, our translation
into LSCs can be viewed as a method for executing natural language require-
ments for reactive systems, or, to put it more succinctly, it enables programming
in natural language. Figure 19 shows a screenshot of the PlayGo development
environment [25] that implements the idea; it will be described in Section 3.8.

We then proceed to propose a novel integration between NL-play-in and
the original play-in method, termed show & tell (S&T) [13]. The idea is more
than a näıve combination; rather, play-in interaction with the GUI is interpreted
intelligently based on the NL text, in which it is interspersed, helping the system
guess precisely what the user meant. Furthermore, we believe that our show &
tell ideas can be extended to combine interaction and speech interfaces in other
domains.

NL programming raises many questions: are the writers of such executable
requirements considered programmers? How familiar should they be with the
target language (in our case, LSCs)? How much knowledge of logic should they
have, and how competent should they be in identifying inconsistencies in the
specification, which may later result in bugs or unwanted behavior? We address
some of these important issues in later sections.

Section 2 describes the LSC language and the play-in method of creating
LSCs. Section 3 discusses the NL interface for LSCs, and provides a detailed
example. Section 4 describes show & tell and its implications. Section 5 describes
a preliminary experiment with the approach and Sections 6 and 7 discuss related
work and future directions, respectively.

2 LSC Language Overview

In its basic form, an LSC specifies a multi-modal piece of behavior, stating what
can be done, what must be done and what is forbidden. The behavior is described
as a partial ordered sequence of message interactions between object instances.
Thus, it can assert mandatory behavior - what must happen (denoted by the “hot
temperature”), possible behavior - what can, or may happen (denoted by the
“cold temperature”), as well as forbidden behaviors and other possibilities and
combinations. The LSC language [8, 26] extends message sequence charts (MSC)
[32], which in the UML are termed sequence diagrams [45]. In both formalisms,
objects are represented by vertical lines, or lifelines, and messages between ob-
jects are represented by horizontal arrows between objects. Time advances along
the vertical axis and the messages entail an obvious partial ordering.

LSCs extend MSCs with the additional modalities of hot and cold and with a
prechart (dashed blue hexagon) and main chart (solid black rectangle) fragments
that specify the “if” and “then” parts of the chart, respectively. A sample LSC

4 Gordon and Harel

is seen in Figure 1. The prechart contains the events that trigger the scenario
and if they indeed occur and in the right order, the main chart must occur
too. The LSC language also includes conditions, assertions, loops and switch
cases. Additionally, in [23, 26] the language was enriched to include also time,
scoped forbidden elements and symbolic instances that allow reference to a class
in general, not only to an instance, with the instantiation being carried out at
runtime.

A variant of the LSC language is shown in Figure 2. This variant, described
in [24], is UML compliant and does not require the prechart and main chart
fragments, but rather adds the modality of “execute” (as solid arrows) or “mon-
itored” (as dashed arrows) to each message. Our implementations of NL and
S&T translate into both variants, with some differences between them, detailed
in the following sections.

Fig. 1. A simple LSC. The prechart (blue dashed hexagon) contains the cold event (blue
dashed arrow) “user clicks the c button”, while the main chart (black solid rectangle)
shows two hot events (red solid arrow): the light state changing to on and a hot event
with a cold condition (blue dashed hexagon), specifying that if the mode is not time

then it must change to time

.

A set of LSCs is executed using the play-out mechanism [26, 27] . Play-out
monitors at all times what must be done, what may be done and what is forbid-
den and proceeds accordingly, yielding a complete execution of the LSC spec-
ification. The execution can be näıve, considering only the current state and
progressing by choosing arbitrarily from all possible next events to be triggered,
or use methods from model-checking or planning to look-ahead and choose an
execution order in a smarter fashion. Details can be found in [26, 22].

Programming in Natural Language ? 5

Fig. 2. The same LSC seen in Figure 1 but in the UML compliant form, the main
difference is that the prechart does not exist and a synchronization invariant seen with
the label ‘Mainchart Start’ can be added to synchronize events to occur only after the
prechart events.

6 Gordon and Harel

2.1 Basic play-in

In [18], the mechanism of play-in was suggested as a means for programming in
LSCs, and at the same time trying to make programming more convenient for
lay-people. In this approach, the user specifies scenarios by playing-them-in di-
rectly from a graphical user interface (GUI) of the system being developed. The
method is related to programming by demonstration (PBD) [7], where programs
are generalized from user actions. PBD end-user-programming is meant for cus-
tomizing software applications using preferences, macro recordings, scripts, etc.
In play-in, the demonstration is used to specify formal rules explicitly in order
to describe the system’s behavior; no generalization is attempted.

During play-in, the developer interacts with the GUI that represents the
objects in the system, still a behavior-less one, in order to show, or teach, the
scenario-based behavior of the system by example (e.g., by clicking buttons,
changing properties or sending messages). This method works well for some op-
erations, mostly those that involve GUI, but is a little more cumbersome for
other operations or properties, e.g., selection from menus. More complex opera-
tions, such as the “if-then” or “when some X then some Y” are less convenient
to specify by demonstration, and are done by tools and menus. The NL interface
for LSC, which we describe in the next section, attempts to alleviate these dif-
ficulties and take a further step towards liberating programming for lay-people.
It also does not require a pre-constructed GUI but can connect to an existing
one; it can also be used to build a new GUI from the behavior described.

3 Natural Language LSCs

The natural language interface for LSCs consists of a context free grammar
(CFG) parser [33], a dialog system, and a knowledge base that also serves as the
system model. Figure 3 describes the architecture and the flow. The parser uses
a CFG adapted for LSCs and is an extension of the active chart parser of Kay
[34]. The grammar is domain general and is composed from a set of rules and
terminal symbols. The terminal symbols include static terminals that are used
as language directives such as if, then, must, may, etc. and dynamic terminals
that are relevant to the model and are processed by a dictionary or taken from
the working system model.

3.1 NL requirements processing

To recall, a context-free grammar (CFG) is a tuple G = (T,N, S,R), where T
is the finite set of terminals of the language, N is the set of non-terminals that
represent phrases in a sentence, S ∈ N is the start variable used to represent a
full sentence in the language, and R is the set of production rules of the form
N → (N ∪ T)∗. The LSC grammar is defined similarly, with the addition of
T = Ts ∪ Td, where Ts is a finite set of static terminals with semantics specific
to the LSC language, Td is a dynamic finite set of terminals that is created for
each system, and Ts ∩ Td = ∅.

Programming in Natural Language ? 7

Fig. 3. The architecture of our NL system for LSCs and the data flow therein. The
user can affect the parsing process and in turn also the dynamic grammar parts.

Requirements are a way of describing scenarios that must happen, those
that can happen, and those that are not allowed to happen. The static terminals
in our grammar are used to help describe the flow of the scenario; e.g., “when
something happens then another thing should happen”, or “if a certain condition
holds then something cannot occur”. The dynamic terminals refer to the model,
its objects and their behaviors.

The static terminal symbols are if, then, must, may, etc. They are impor-
tant for inferring the semantics of LSCs. The dynamic terminals are processed
by a dictionary and transformed from parts of speech to possible parts of the
model. They are grouped into objects, properties, methods and property

values, which need not be mutually exclusive. The dictionary is used to check
for word stems and transform words, such as clicks or clicked, into the stem
click. It is also used to assign each unknown word to the most probable group
according to its dictionary meaning. The parsing process is augmented with a
dialog system, in which the user resolves ambiguities or inconsistencies in the
entered requirements. Furthermore, the user can choose from a menu the group
a particular word should belong to.

For example, in “the user presses the button”, user and button are both
objects. Similarly, press is a verb that is added to the methods terminal group.
Other types of terminals are properties and property values. In the example “the
display color changes to red”, the noun color, which is part of the noun phrase,
is a property of the display object and the adjective red is a possible property
value. Property values may also be used as possible variables for methods.

Figure 4 displays the parse tree for the requirement: “when the user clicks the
b button, the light turns to on”. When analyzing the parse tree, the when and
then determine where the prechart of the LSC ends and its main chart begins,
the messages added are click from the user to the button in the prechart and
turn with a parameter on in the main chart, as seen in Fig. 5(a).

8 Gordon and Harel

Fig. 4. The parse tree for the sentence “when the user clicks the button, the light turns
on”. The parts of the LSC grammar are shown in the nodes. There is one message,
Msg, from object phrase (OP) user to object phrase button, and another self message,
SelfMsg, of object light with method turn and argument on.

(a) (b)

Fig. 5. Sample LSCs created automatically by our NL system. (a) A simple LSC cre-
ated for the sentence “when the user clicks the b button, the light turns on”. (b) A
more complex LSC created for the sentence “when the beeper turns on, as long as the
beeper state is on, if two seconds have elapsed, the beeper beeps and the display mode
cannot change”.

Programming in Natural Language ? 9

The grammar is inherently ambiguous, due to use of dictionary terminals: the
same word can be used for noun, object or property value. However, this is no
real obstacle, since we parse each sentence separately and update the grammar
as the user resolves ambiguities. In some cases, if a model is available as code or
as a GUI, some symbols may be resolved by referring to the model. For example,
if the model has an object named beeper then chances are that the word beeper

will be an object.
Our parser is an active chart parser, carrying out bottom-up parsing with

top-down prediction [33]. We detect errors and provide hints for resolving them
using the longest top-down edge with a meaningful LSC construct. For example,
a message or a conditional expression that has been partially recognized provides
the user with meaningful information. In Section 3.4, we describe additional
methods for optimizing the dialog with the user and the interface for resolving
ambiguities.

3.2 The digital wristwatch system

We now describe the main parts of our method for automatically translating
structured requirements into LSCs. We demonstrate the main language phrases
by constructing a simplified version of the digital wristwatch described in [17].
There, the wristwatch behavior was described using the statecharts formalism.
Here, we describe the same system in our controlled natural language and then
automatically transform it into LSCs. Generally, the watch displays the time
and can switch between different displays that show (and allow changes to) the
alarm, date, time and stopwatch. It has an option for turning on the light, and
an alarm that beeps when the set time is reached.

An example, taken verbatim from [17] is this: “[The wristwatch] has an alarm
that can also be enabled or disabled, and it beeps for 2 seconds when the time
in the alarm is reached unless any one of the buttons is pressed earlier”. This
requirement is ambiguous and unclear for our purposes: when a button is pressed
should the alarm time be canceled or is the intention merely that the beeping
stop? Basic user knowledge of the system helps us infer that the beeper should
stop. Furthermore, the fact that the alarm beeps only when it is enabled is
deduced by common knowledge, as it is not explicit in the text. The structured
requirements for this example is: “when the time value changes, if the time
value equals the alarm value and the alarm state is enabled, the beeper turns
on”; “when the beeper turns on, if two minutes have elapsed, the beeper turns
to off”; “when the user presses any button, the beeper shall turn off”. Although
the original requirement is fragmented and separated into several simpler ones,
the combined effect of these will achieve the same goal.

3.3 LSC grammar constructs

We now show how our grammar translates controlled natural language into LSCs.
Since we allow a CFG we can increment the grammar with additional rules that
allow various ways of generating similar constructs. We can thus increase the

10 Gordon and Harel

set of accepted specifications by augmenting the grammar. However, ambiguity
may grow as the grammar grows which would require the user to explicitly
disambiguate his intentions in too many cases for the process to be friendly.
The fact that sentences are parsed separately allows resolution of ambiguity in
various ways, as described Section 3.4. We shall describe how the basic structures
— messages, property changes, and some of the less trivial ideas that include
temperature, conditions, loops and symbolic objects — are parsed. A number of
advanced ideas, such as asserts and synchronization, are not yet supported in the
current implementation. Nevertheless, the current grammar allows implementing
fully executable systems, and has been tested, among other examples, on the
digital wristwatch, on an automatic teller machine, and a baby monitor system.

Messages. The simplest language construct in LSCs is the message between
objects, or from an object to itself. Messages are of two types: method calls
or property changes. In the first type, the verb specifies the method to call.
For example “the c-button is clicked” is mapped into a self message from the c-
button to itself. A message between objects, like “the user presses the c-button”,
results in a message between the user and the c-button. Parameters can also be
used, as in “the light turns to on”, in which case the turn method of the light

is invoked with a value of on as a parameter. In the second type, the message
is some change in a property value, and the property is used as an adjective in
the sentence. For example, in “the display color changes to yellow”, color is
a property of display and the message sets the property value to yellow.

When a sentence can be fully parsed into more than one basic structure,
there is a grammatical ambiguity for at least one word. The user is notified of
the ambiguous word location and he/she may select the correct word sense from
a list of possible terminal symbols. For example, if nothing is known about the
dynamic terminals of the system, the sentence “the time value changes” can
have two complete parse options, both valid. Is value meant as a noun —- “a
numerical quantity” — or is it used in the sentence as a verb — “to estimate
or assign worth of”? In the first case value can be a property of time, and in
the second, a method. Figure 6 shows the two possible parses. In our system,
the user is prompted disambiguate between the possibilities, by selecting one of
the options and his/her selection changes the dynamic dictionary terminals. The
selection effectively causes value in the subsequent text to be interpreted as a
one interpretation rather than another, avoiding additional disambiguation.

Temperature. LSCs allow the user to specify whether something may happen,
captured by a cold temperature (depicted using dashed blue lines), or what must
happen, which is hot (depicted using solid red lines). The grammar allows the
user to specify the temperature explicitly by using the English language con-
structs may or must and some of their synonyms. If the user does not explicitly
specify the temperature of the event, it is inferred from the sentence structure.
For example, the when part of a sentence is cold and the then part is hot. In

Programming in Natural Language ? 11

(a) (b)

Fig. 6. Two parses for the same sentence. (a) Value is used as a noun and interpreted
as a property of time. (b) Value is used as a verb and is interpreted as a method with
the argument changes.

English it is implicit that the when part may or may not happen, but that if it
does then the then part must happen. See Fig. 7 for an example.

Fig. 7. The LSC created for the sentence “when the user presses the d button, if the
display mode is date, the display mode changes to time”. The message in the when
part is cold (dashed blue arrow), while the messages in the then part are hot (solid red
arrows).

Conditions. Conditions, frequent in system requirements, are readily trans-
lated into conditions in the LSC formalism. The grammar accepts expressions
that query an object’s property values, such as “if the display mode is time”.
The condition is implemented in the LSC as a cold condition, and all phrases
that occur in the then part of the phrase appear in the subchart of the condition.
The dangling-else ambiguity that appears frequently in programming languages

12 Gordon and Harel

(a) (b)

Fig. 8. Conditions in LSCs. (a) The LSC created for the sentence “when the user
presses the d button, if the display mode is time, the display mode changes to date,
otherwise if the display mode is date, the display mode changes to time”. (b) Shows
what would happen if the otherwise were replaced by an and. Clearly, these two give
rise to very different behaviors.

is resolved in a way similar to what is done in most parsers, by choosing the
‘else’ that completes the most recent ‘if’, which is reasonable also in natural
text. We allow the user to manipulate the hierarchical structure of the sentence
using commas and conjunctions; see, for example, Fig. 8.

Symbolic objects. In English, definite or indefinite determiners are used to
specify a specific object or a non-specific object, respectively. The determiners
are part of the static terminals that differentiate between objects and symbolic
objects. Consider the sentence “when the user presses any button, the beeper
shall turn to off”. The requirement is translated into the LSC of Fig. 9, where
the button is symbolic (drawn with a dashed borderline) and can stand for (and
during execution will be instantiated by) any of the buttons. The LSC semantics
in fact require that during execution a symbolic object become bound using an
interaction with another object or a property. Thus, the sentence “when the user
presses a button, a display turns on” is not valid, since the display is not bound
at all and is supposedly symbolic. It is clear that the sentence is ambiguous also
to an English reader, and the user is prompted to resolve the problem.

Forbidden elements. Our grammar supports forbidden elements, by using the
negation of messages. For example, “the display mode cannot change” would
result in a forbidden element. In LSCs, the scope of a forbidden elements is
crucial, of course, specifying the parts of the LSC to which they are relevant
[26]. We use the syntax tree and the location of the forbidden statement within

Programming in Natural Language ? 13

Fig. 9. The LSC created for the sentence “when the user presses any button, the beeper
shall turn to off”. The button object referred to by the user is a non-specific object
and is therefore translated into a symbolic object of the button class, shown using a
dashed box.

it to resolve the scope. Conjunction can be used to verify that a forbidden phrase
is inside a subchart, as demonstrated in Figure 10. A forbidden element scope
is by default the LSC chart.

In Play-Engine, the forbidden elements are displayed in a separate section
at the bottom of the LSC chart, and the scope can be set to any of the LSC
subcharts, for example, in Fig. 5 (b) the mode change of display appears in the
bottom area. The scope is a property of the element and is not displayed directly
on the chart but rather through interaction with the chart. In PlayGo forbidden
elements appear in the chart after a forbid assertion. The scope is the parent
chart of the assertion and the forbidden element, see Figure 10.

Forbidden scenarios. In addition to specifying negative events as forbidden
elements, one can also specify forbidden scenarios — entire scenarios that cannot
happen. These are specified using language phrases such as “the following can
never happen”, prefixing the scenario that is to be forbidden. In the LSC, this
can be done by putting the scenario in the prechart with a hot false condition in
the main chart, which entails a violation if the prechart is completed. To separate
the ‘when’ from the ‘then’ parts of the scenario, we add a synchronization of all
the objects referenced in the scenario at the end of the ‘when’ part, as it is
extracted from the syntax tree.

Additional constructs. Our grammar supports translation into additional
LSC constructs, i.e., loops, time constraints, local variables, and non-determinism.
For example, the following requirement translates into an LSC with a loop,
“when the beeper state changes to on, as long as the beeper state is on, if two sec-
onds have elapsed, the beeper beeps”. The loop created is unbounded, controlled
by a test of whether the beeper state is on, using a cold condition, see Figure
5(b). When the condition evaluates to false, the loop will exit. The LSC cre-
ated also refers to the passing of time using two seconds have elapsed. This
part translates to saving the current time in a local variable and then adding
a condition that waits until two seconds elapse from the saved time; see Figure

14 Gordon and Harel

(a) (b)

Fig. 10. An UML compliant LSC created in PlayGo with a cold forbidden event of
display mode changing. The forbidden message SetMode(ANY) appears below a forbid
assertion. In (a), the scope of the forbidden message is the chart, and in (b) it is the
loop subchart that contains the forbid assertion and the forbidden message.

Programming in Natural Language ? 15

5(b). The grammar includes static terminals, that support time references; e.g.,
seconds, minutes, hours, etc.

Another possibility, for advanced users, is to refer to variables. Variables in
LSCs are locally defined inside a specific LSC. In the sentence appearing in
Figure 11, some variables are defined and are later referred to in the controlled
English.

Some additional terminal symbols augment the grammar with the ability to
specify nondeterministic or probabilistic choices. In Figure 12, the example adds
a feature of a psychedelic light that uses this ability.

Fig. 11. The LSC created for the sentence “when the display mode changes to stop-
watch and the display mode changes, store the current stopwatch mode, and then if
the display mode is stopwatch, set the stopwatch mode to the last stopwatch mode”.
The store and last terminal symbols allow refering to the local variable. When the
display mode is stopwatch and then it changes to some other mode, the last stopwatch
mode is saved and restored when the display mode changes again to stopwatch.

3.4 Resolving problems with the help of the user

To resolve imprecise and ambiguous requirments with the help of the user, we
have implemented a dialog system using an interface similar to the quick fix
interface of programming environments like Eclipse IDE [6]. The quick fix in-
terface is quick and comfortable; it draws a squiggly underline for words or
sentence parts that have a problem, notifying the user that a problem exists and
at which location. Hovering over the problem location with the mouse provides
an explanation of the problem. When available, resolve options are displayed in

16 Gordon and Harel

Fig. 12. The LSC created for the sentence “When the light turns on, sometimes the
light color changes to green and other times the light color changes to blue”. Here
the choice is governed by a 50-50 possibility split, but other probabilities can be used
explicitly.

the pop-up dialog that describes the problem. The user may then select one of
the options from the dialog (a quick option that fixes the problem) or make a
different change on his/her own once the problem is known.

Figure 13 shows a sample problem and available solutions. The quick fix in-
terface displays the problem on the text itself — the focus of the user’s attention
when entering requirements through text — allowing him/her to fix it with a
single click.

Our NL tool works in three stages:

1. Grammatical analysis.
2. LSC disambiguation.
3. Connecting elements to the model.

The first phase checks that the sentence conforms to the LSC grammar and
parses it. In the second phase,if more than one full parse for the input sentence
exists, the first point of difference between the leaves of the two trees is found and
the difference in interpretation is displayed on the relevant word. For example,
in the partial sentence “the controller turns the knob”, when no information
about model elements exists, one interpretation is a message turns from object
controller to knob and another is a self message turn from object controller
to itself with the message parameter of the knob. The first point of difference
in the text is the knob, which is an object in the first interpretation and a value
in the second. Therefore, the the knob text will be displayed with a squiggly
line and the two resolve options will be object and value.

In the third phase, we first check that the terms the user refers to appear
in the system model. The system model is a tree structure containing all the

Programming in Natural Language ? 17

Fig. 13. A sample of quick fix options for resolving an ambiguity for button. The
problem is indicated by the squiggly line and the quick box dialog that appears when
hovering with the mouse over the problem displays the problem and possible solutions’
when available. Selecting a solution performs the necessary changes.

objects in the specification, each object with its properties and methods, with the
relevant signature. It thus represents the classes and object instances relevant to
the system specification. Figure 14 displays the system model of the wristwatch
example. Some objects may be represented in the GUI, while others may not.
The system model also requires that each object is of a specific class type, and
hierarchy between classes is allowed.

The system model serves as the knowledge base for the system and allows
verifying that requirements refer to existing objects, asking the user if he/she
would like to create new objects, classes, properties, etc. This type of analysis
helps the user make the necessary connection between various requirements and
the GUI or the model of the system. For example, if the user wrote about the
click of the D-button, the method will now check that a D-button object exists
as part of the system model. If it does not exist, but an object with a similar
name does (similarity here is tested using the Levenshtein string distance [37]),
one of the possible resolve options will be to change the object to the existing
object.

Another type of similarity that can be tested is using the dictionary to find
word synonyms. In other words, a user writing click in one place and press

in another, while referring to the same object, is probably referring to the same
operation.

When no similar method/object is found, the user can decide to use the quick-
fix menu to add a new one. This way, the NL requirements are automatically
connected to the model, to the GUI (if one exists), and among themselves, since
the system helps the user refer to the existing terms when possible.

3.5 The NL algorithm

We now describe the algorithm that translates the NL requirements into LSCs
and resolves errors with the help of the user. The parsing is performed in a

18 Gordon and Harel

Fig. 14. The system model view with a model of the wristwatch. The view contains
different tabs. The main tabs are the classes tab with the classes, their methods and
properties, and the objects tab shown here, with the objects, their methods and prop-
erties. Objects that are created from a GUI application are marked with a G,

(a) (b)

Fig. 15. The wristwatch GUI. (a) The system GUI generated automatically from the
model. (b) A graphical GUI created manually, connected to the LSCs

Programming in Natural Language ? 19

bottom-up fashion, online, in an incremental manner, using an active chart parser
[33]. The grammar’s definitions include semantic information for creating an
abstract-syntax-tree from the parse output, as described in [33]. Table 1 lists
some of the grammar rules and the respective semantic rules used to create the
LSC parts. See Figure 16 for details on the algorithm.

Once a full parse is found, the following actions are performed in order. If
more than one full parse is found, LSC disambiguation is performed, s described
in Section 3.4. Following this phase, an LSC is created using the semantic in-
formation extracted from the parse tree. The parse tree is analyzed recursively
until all edges are processed using the semantic rules of the grammar. Each text
part is mapped to the grammar rule that parsed it and to the LSC portion it
will generate. The LSCs induce also the model: objects, methods and proper-
ties. The algorithm checks that the model parts exist, and if not it displays a
problem, allowing the user to select from the quick fix options, e.g., adding new
elements to the model, or changing to existing elements. When there are no more
problems, the user saves the text and the LSC is created automatically.

Error information helps the user complete the sentence assuming the longest
edge in the active chart parser is the most relevant, and displaying the next
expected symbol. While this may not yield a correct parse, it constitutes a
heuristic guess on completing an incomplete sentence. Example problems in this
case are: “you need to add a then part” or “you need to add a property name”,
etc. This process helps the writer understand the types of sentences accepted by
the language. As explained in Section 5, an initial evaluation shows that this is
something we can indeed expect from the user.

3.6 Writing rigorous requirements

The NL-play-in process helps the writer to be more rigorous by, e.g., requiring
him/her to refer to terms already in the model clearly, and using the same
naming conventions. If, for example, in one requirement there is a reference
to a user clicking a button, and in another requirement to pressing a button,
the connection between click and press needs to be determined. This interaction
creates awareness that a new method is added, which can be reused in subsequent
requirements. It also makes the writer more aware of the objects, methods and
properties, thus better connecting new requirements to existing ones.

When the model system (with or without a GUI) has been designed in ad-
vance, requirement writing is easier, since the system helps the user refer to
already existing terms, and there is no need to resolve ambiguities that can be
clarified by what already exists.

An additional possibility when writing rigorous requirements is to help check
that the requirements have some effect, by being referenced in other require-
ments, or by having an effect in the code that augments the LSCs. For example,
a light turning on, or a communication channel opening, can be implemented
in low-level code, triggered through the LSCs. When a writer feels he/she has
a complete set of requirements, we could, in principle, check how “connected”
the requirements are and obtain a list of methods or properties that are not

20 Gordon and Harel

Rule Semantics

LSC → MainPreClause Create LSC
LSC → Forbid Then Clause Create forbidden LSC
MainPreClause → When Clause-Cold Then Clause-Hot Add prechart and mainchart
Clause-Cold → Clause Create cold clause
Clause-Hot → Clause Create hot clause
Clause → Clause Connect Clause Add two clauses
Clause → Cond-Clause Conditional clause
Clause → Loop-Clause Loop clause
Clause → Msg Method call clause
Clause → Prop-Chage Property change clause
Clause → Time-Change Time change clause
Loop-Clause → While Expression Then Clause Create a loop with condition
Msg → Op [Temp] Method Op [Prop-Val] Create a method call message
Msg → Op [Temp] Method [Prop-Val] Create a method call message
Msg → Op Method Op Prop-Name Create method call with a property as argument
Prop-Change → Op [Temp] [Set-Prop] Op Prop-Name [Prop-Val] Create a property change message
Prop-Change → Op Prop-Name [Temp] Set-Prop [Prop-Val] Create a property change message
Expression → Op Prop-Name Compare Prop-Val Create Condition Expression
Forbid → the following can never happen
Op → Det Object Create object
Op → Det Object with Prop-Name Prop-Val Create object with condition
Connect → Then exit scope
Connect → And After That add sync
Connect → And Only Then add sync
Connect → And add
Det → Det-Indefinite indefinite determinant
Det → Det-Definite Definite determinant
Det-Indefinite → a | an | any | all | some | other | another symbolic object
Det-Definite → the instance of an object
Temp-Hot → must | shall | should | will hot element
Temp-Cold → may | could | can | does cold element
Temp-Hot-Not → Temp-Hot not hot forbidden element
Temp-Cold-Not → Temp-Cold not | cannot cold forbidden element
Set-Prop → turn | change | set | turns | changes | is set | sets
Proposition → to | from | by | on | in | of
When → when | whenever
Then → then | , | do exit scope

Table 1. LSC Grammar Rules: the semantics for each rule appear in curly brackets
some of them enumerations and other function calls. Symbols in square brackets are
optional, and rules with a right hand side with | refer to different possibilities for the
right hand side.

Programming in Natural Language ? 21

connected to other LSCs. This can help verify that the methods or properties
have some low-level effect, or alternatively, prompt fixing the requirements.

Consider, for example, a blinking state of some light. Either the blinking
state should be used somewhere else in the requirements, or it should trigger
some change in a hardware/low-level behavior of the system being described.
A connectivity analysis can help remind the writer that he/she wanted to add
a description of what blinking means, or prompt him/her to implement it as a
low-level operation. This addition is analogous to analyzing code and showing a
programmer unreferenced functions, as is done by dependency analysis tools.

3.7 The chicken and egg dilemma

In [26, 27], there is an assumption that a behavior-less GUI is given, with which
the user can carry out play-in. However, this is not always so. Rather, the GUI
requirements often become clear only during the process of describing the re-
quirements. Dually, when playing with the GUI, additional behavioral require-
ments emerge, which, in turn, require additional GUI requirements. And so on,
in a cyclic fashion. Thus, in many cases the behavior and the GUI are developed
side by side; initial behavior defines the initial system, and as the GUI inter-
face comes to life it triggers additional behavior, which requires changes to the
interface and the model, etc.

With this in mind, we have designed NL-play-in to support both directions.
If a GUI/model exists as a behavior-less application, its terms will be integrated
into the grammar’s dynamic terminals and the requirements will be easily con-
nected to them. On the other hand, if requirements define non-existent objects
or methods, these can be added to the model by a single click in the quick-fix
interface, and later the GUI can be enhanced accordingly.

Low-level operations can also become part of the model when entering the
behavioral requirements. For example, the turning on of a light may require
a change in the final engineered system, but this is not necessary at the LSC
programming stage.

An additional capability for playing with a GUI-less system includes auto-
matically producing a simple GUI from the LSC behavior. Since the requirements
produced induce a system model, we generate a simple GUI from it, called system
GUI, that displays all the objects, allows viewing and changing the properties,
and activating the possible operations. In our case studies we found that this gen-
erated system GUI is a good solution for non-programmers or for programmers
with no GUI experience.

Figure 15 shows the system GUI produced for the wristwatch, side by side
with the graphical GUI created manually. In Section 7, we discuss automatically
generating a better GUI by extending the grammatical analysis of the language
requirements to find graphical objects directives.

22 Gordon and Harel

3.8 Implementation and execution

To implement the wristwatch, we used PlayGo [25], an Eclipse based IDE that
supports the UML compliant version of LSC from [38]. PlayGo was augmented
with a plug-in that implements the NL-play-in, using the WordNet dictionary
[41] for the dynamic terminals, via the RiTa Java library [31].

In the wristwatch example, the GUI was set up to include the objects’
low-level behavior (e.g., the button’s click, the light’s turn on, the time’s
increase). PlayGo can support extracting the GUI object names and meth-
ods directly by using reflection on the model.

Requirements were written to describe all aspects of the wristwatch’s be-
havior depicted in its statechart specification [17]. A demonstration of the im-
plemented wristwatch is available in [46]. Other example systems and their NL
requirements appear in [], including an ATM system and a baby monitor system.

4 Show & Tell

Show & tell integrates the NL interface with play-in. There are obvious benefits
to writing (telling) requirements in a natural language, but playing-in with the
GUI in order to show objects and operations also has advantages. Therefore, the
idea is for the user to make the best use of both. The user can enter requirements
textually but can also create parts of the sentence automatically by interaction
with the GUI, without explicitly writing object names or actions.

The term show & tell is used to denote the process of showing the audience
something and telling them about it. When a GUI object has a graphical repre-
sentation, of a slider for example, then showing the dragging action in the midst
of creating a textual requirement may be more convenient than describing it
textually. The same goes for pointing a button on a toolbar.

Show & tell combines the interaction with the text depending on the context.
For example, the writer enters the text: “when the user”, and then clicks the A

button, in this case adding “clicks the A button” automatically to the text. The
algorithm interprets the interaction based on the current state of the text and
finds the best completion. The user can also just enter the “when” and click the
same button, in which case the algorithm adds “the user clicks the A button”.
The grammar generates possible and reasonable complete suggestions for the
text. The longest one is added to the text, and the quick fix interface provides
additional possibilities.

To explain how the combination is carried out, we use some definitions from
chart parsing algorithms, and refer the reader to [33]. A given action of the user
creates a list of possible parse edges. Each of these includes a grammar rule with
input text that can generate it, a location, and the words that create it. The
edge is of the form r, [i, j, k], where r ∈ R is a grammar rule, i and j are the
start and end indexes of the text added by the edge, and k is the dot index that
specifies which right hand symbols of the rule have been found for each edge. If
all symbols have been found, then the dot index equals the size of the rule’s right

Programming in Natural Language ? 23

public void ChartParse(chart , agenda) {
while(agenda){

ProcessEdge(agenda.pop ());
} }

private void ProcessEdge(edge) {
AddToChart(Edge edge) //if not in chart already
if(edge.isComplete ()) {

ForwardProcess(edge);
}
else // complete edge {

BackwardProcess(edge);
BottomUpPredic(edge);

} }

private void ForwardProcess(A→ α • Bβ, [i, j]) {
foreach(Edge B → γ•, [j, k] in chart) {

AddToAgenda(A→ αB • β, [i, k]) //if not in agenda
} }

private void BackwardProcess(B → γ•, [j, k]) {
foreach(Edge A→ α • Bβ, [i, j] in chart) {

AddToAgenda(A→ αB • β, [i, k]); //if not in agenda
} }

private void BottomUpPredict(B → γ•, [i, j]) {
foreach(Rule A→ Bβ in grammar) {

AddToAgenda(A→ B • β, [i, j]); //if not in agenda
} }

public void Initialize () {
foreach(rule r in grammar) {

if(rule.getLeftSymbol == startSymbol) {
AddToAgenda(new Edge(rule));

} } }

public void ProcessNewWord(word , i) // online parsing {
AddToAgenda(W → word•, [i, i+ 1] // where W is the rule for the word
ChartParse(chart , agenda);

}

public void ProcessUserInput(possibleEdgeList , inputLength) {
duplicateChart = chart;
duplicateAgenda = agenda;
foreach(Edge edge in possibleEdgeList) {

AddToAgenda(edge);
}
ChartParse(chart , agenda);
possibleTexts = FindBestParse(chart , inputLength);
foreach(Text text in possibleTexts) {

bestText = MaxLength(text , bestText); // longest text better
}

chart = duplicateChart;
agenda = duplicateAgenda;
}

private ListOfTexts FindBestParse(chart , inputLength) {
possibleTexts = null;
foreach(Edge edge in chart) {

if(edge.getStartIndex () == 0 and
edge.dotIndex > inputLength) {

text = getWords(edge); returns word terminals of an edge
possibleTexts += text;

} } }

Fig. 16. The show & tell algorithm: (a) contains the general active chart parsing algo-
rithm. In each requirement being entered, the indexes represent the locations between
the words (as in: 0 when 1 the 2 user 3). An edge represents a grammar rule and
the progress made finding it in the input. We use the common dotted rule, where a
dot • within the right-hand side of the edge indicates the progress made in recogniz-
ing the rule, and two numbers [i, j] indicate where the edge begins on the input and
where it ends, to allow combining edges. The online parser is initialized and then calls
ProcessNewWord for each word entered. (b) shows the ProcessUserInput that is called
when a user action is performed, and initiates the search for the interaction’s meaning.

24 Gordon and Harel

side list of symbols and the edge is complete, otherwise, it is incomplete. The
parsing algorithm we use is an online version of an active chart parser [34] with
similar definitions. Our interaction edge is of the form r, [i, j, k], (w1, ..., wn), with
the addition of w1, ..., wn, the words that the edge may add as a result of the
interaction. The ability to specify end and start indexes means that an action can
add not only a single edge following the parse text, but also a sequence of edges.
The interaction actions add only complete edges, assuming a user performing an
action never refers to an incomplete edge, since edges are aligned with rules and
thus with semantic meanings; see, for example, Figure 17(c).

The edges created by an action are added to a temporary copy of the cur-
rent parse chart, and are marked as interaction edges; they are processed using
bottom-up prediction and new edges are inserted to the parse temporary chart.
The algorithm, then searches for the best possible parses. These have to be edges
with end index j, longer than the input index before the interaction, and start
index i = 0. Thus, they are a parse of the entire input. The longest such edge
is selected and its words are displayed to the user. Additional edges that meet
these conditions are displayed as alternatives for the interaction using quick fix.
A more formal description of the algorithm is provided in Figure 16 reprodeced
from [13], Figure 18 shows how show & tell is connected to the NL parsing
architecture.

Fig. 17. Possible additions for an interaction: (a) the prefix text and some possible
interaction outputs; (b) two possible edges from the combination; (c) a possible incom-
plete addition but incomplete edge, as discussed in Section 4, which is not a reasonable
suggestion of the algorithm.

Although the current implementation of show & tell requires showing and
writing, it can easily be extended by using speech recognition to actually “tell”.
This requires using speech engines with low error rate, which are becoming
feasible in recent years and will probably become more abundant in the future.
We have tested an implementation of NL-play-in using speech with the Microsoft
Speech API (SAPI 5.1) engine [40] and obtained good results with native English
speakers. See the empirical evaluation in Section 5.

Programming in Natural Language ? 25

Fig. 18. The connection between show & tell and the other system components.

A similar combination of voice and gestures (as opposed to writing and show-
ing) has been used for managing graphical spaces with “put-that-there” [2]. In
that work, the user uses voice commands to request adding, moving and ma-
nipulating objects on a screen, but can also use the voice pronoun reference of
this, that, here, there, and point a hand to show the referenced objects
or locations. Show & tell integrates text and GUI manipulation to assist in the
creation of system requirements, in a domain generic application.

The idea of show & tell has been described here in the context of program-
ming. However, combining spoken or written language with actions or gestures,
controlled by a context-free grammar, can be generalized to many kinds of inter-
actions. In fact, show & tell can be used as a generic architecture for combining
text and gestures, and we plan to substantiate this claim in future work.

5 Preliminary Evaluation

We have conducted an exploratory experiment comparing play-in, NL-play-in
and show & tell, as well as comparing programming in LSCs and Java, see [14].

Our main questions were: (i) Is the natural language interface quickly learn-
able and how do the various interfaces to the LSC language compare? (ii) How
does the LSC language compare with Java (as an example of a common procedu-
ral language) in programming duration, and when considering user preferences?
The experiment was conducted with twelve participants who had basic knowl-
edge of the LSC language, as taught in the course on visual languages described
in [21]. Some also had experience as Java programmers. Table 2 provides details
of participants’ previous experience.

26 Gordon and Harel

Table 2. Participants previous experience

Java Exp. LSC exp. Java Exp. LSC exp.

1 > 5 years 2-5 projects 7 > 5 years Read only

2 1-2 years 2-5 projects 8 None 1 course project

3 > 5 years 2-5 projects 9 1-2 years 1 course project

4 > 5 years 2-5 projects 10 > 5 years 1 project

5 1-2 years Read only 11 1-2 years 1 course project

6 > 5 years > 5 projects 12 None Pen and paper LSCs

5.1 Methods

To deal with the first question, we asked participants to program various tasks
using four methods: basic play-in, NL-play-in, show & tell, and direct construc-
tion of the charts. The latter method entailed creating the diagram by drawing
it, dragging and dropping elements. For the second question, we asked the par-
ticipants to program very similar tasks once in LSCs and once in Java. Half
started with LSC and the other half started in Java to counterbalance effect of
programming a similar second task. All participants worked in the Eclipse IDE
with PlayGo. This allowed them to start with a given GUI, (see Figure 19), and
add the behavior in LSCs or in Java. The participants were provided with a
tutorial on each method for creating LSCs.

The tasks we provided for the LSC and Java experiment were small, and
included implementing an unknown game that teaches letters and colors. Table
3 shows some sample tasks.

Table 3. Sample tasks

T1 The LSC in Figure 19.

T3a When the game starts, the display shows a random letter and
displays a random color, the player is expected to click on the
button with the displayed letter, and on a button with the dis-
played color. When he’s successful, the display shows ”Success”.

T3b When the user succeeds the score is increased, and if he fails the
score is decreased.

T3c The game is won when the score reaches 5, at which point the
display shows ”You Win” with a yellow background.

The participants noted the begin and end times of each task. They also an-
swered questions in writing after each task, and were interviewed at the end
of the entire experiment. In tasks T1 and T2 they were asked to program the
required behavior using all four methods, and then write which method felt
quickest and which of them they preferred. The order between the four meth-
ods changed between participants to counterbalance effects of programming the
same behavior repetitively. In task T3 they were asked to program the required

Programming in Natural Language ? 27

Fig. 19. PlayGo environment, with a sample LSC and the natural language that cre-
ated it. The GUI used in the experiment appears on the right and the editing menu is
above it.

28 Gordon and Harel

behavior with their preferred method and explain why they preferred it. Seven
out of the twelve participants completed the third task also in Java, the order
was counterbalanced, so that three participants started with the Java task.

5.2 Results

Of the four interfaces, NL-play-in was preferred by nine out of twelve partici-
pants. Those who did not prefer it mentioned technical problems and personal
preference for exact and well-defined syntax. They also suggested that for the
learning phase, templates or more examples would have made it easier for them.

We compared task times using a paired two-tailed T-test and found that NL-
play-in (5.25 ± 3.6 minutes) and play-in (5.3 ± 3.5 minutes) were quicker than
direct chart creation (7.6 ± 2.9 minutes). We found that show & tell suffered
from implementation bugs and was considered inconvenient, since it required
interspersed use of both the keyboard and the mouse. This may be different for
programmers who type blindly and for non-programmers who may type slower
and prefer mouse shortcuts. We are also certain that replacing typing by speech
recognition will, to a large extent, eliminate this problem. We also found that
the Java task implementation time (29.6 ± 8.8 minutes) was comparable to the
implementation time in LSC (25.7 ± 5.5 minutes).

In answers to questions during and at the end of the experiment, most of
the participants preferred the NL-play-in interface to the other interfaces, and
to Java. It is interesting to note that most participants reported that NL-play-in
felt quickest to them even when it was not quickest considering implementation
duration. Some of the comments collected were that entering requirements in
English, resolving ambiguities, and then seeing the final generated LSC was fun
and rewarding. Errors were hard to account for, mainly because we did not
ask the participants to execute their artifact due to time constraints (the entire
experiment took approximately three hours).

Regarding the learnability of the LSC language, many of the participants
had a tough time completing the NL tasks at the beginning of the session, and
expressed some frustration with the language. However, about an hour later, they
exhibited satisfaction when using the NL interface and getting quick results. For
example, when interviewed, one participant who said “I was getting confused
with NL” in T2, later explained his choice of using NL in T3 as follows: “When
you get used to its English, it’s quite fast to use”. When asked in a later interview
regarding the NL interface learnability, the same participant answered: “The
beginning was tough, but I got used to it pretty quickly. Not sure the start can
be eased, it was pretty quick”. This sequence of responses is representative and
was consistent for most of the participants.

6 Related Work

NLP has been used to aid software engineering in many ways. Some methods
help create models and support the design process [44, 12] without yielding a

Programming in Natural Language ? 29

complete executable artifact. These methods can extract from the text objects
and message sequences, and help reduce errors in the design process. For ex-
ample, in [44], use case scenarios are parsed to extract a representation of the
classes and objects for the class diagram.

In the remainder of this section, we review various methods that translate
natural language (or a subset thereof) into an executable artifact. These methods
have similar motivations to ours, and each comes with its own style and benefits.
One should remember, however, that these are all NL in full and none offer the
ability to combine NL with GUI-based actions, as in show & tell.

In [5], use case templates, written in controlled natural language (CNL),
are translated into process algebra (CSP). A Microsoft Word plug-in checks ad-
herence of the use case specification to the CNL grammar. The models allow
checking refinements between different model views and system property val-
idation. They support user view use cases, which specify user operation and
expected system responses, and component view use cases with one component
that invokes an action and another one that provides the service. The translation
into CSP is similar to ours. However, in [5] the CNL is defined as table entries
in use cases, rather than more natural sentences with commas and conjunctions
as we do.

In [35], a behavior tree (BT) notation is used, and a state machine is synthe-
sized, rendering the BT executable. Although the authors refer to their process
as execution of natural language requirements, the execution is actually of the
BT and there is no automatic translation of the natural language requirements
into BT. Quoting from [35]: “Behavior Tree models are developed directly from
natural-language system functional requirements by a stepwise process of first
translating the behavior expressed by individual requirements into a partial tree
and then integrating the fragments together to form a complete tree”. In our
work, the translation from the natural language is automatic and the LSCs cre-
ated are directly traceable, and can then be directly executed.

There are additional approaches that generate executable object-oriented
code from natural language. Two-level-grammar (TLG), [3, 4], is an object-
oriented requirement specification language with a natural language style. It is
sufficiently formal to allow automatic transformations into UML class diagrams
and into object-oriented code, such as Java. The methods are described in natural
language as a sequence of behaviors. The language includes sequences of events
and separation into services/functions that are later referred and called. It is a
way of describing object-oriented code and operations textually using function
definitions. Each function definition is composed of logical rules executed in the
order they are given.

Table 4 contains an ATM example from [4]. It shows the writing style of TLG
in the left column, and the right column describes similar behavior written in
our input NL. Our approach interleaves fragmented requirements at execution
and appears to require less design from the writer’s side.

In spoken Java [1] by Begel and Graham, programmers can describe their
Java program orally in natural language, and the relevant code is automatically

30 Gordon and Harel

Table 4. Textual requirements for an ATM. The left column is taken verbatim from
[4]. the right column describes similar behavior in NL-play-in.

TLG NL for LSCs

The bank keeps the list of accounts. Each
account has thre integer data fields: ID,
PIN, and balance. The ATM machine has
3 service types: withdraw, deposit and bal-
ance check. For each service first it verifies
ID and PIN from the bank.

When a user withdraws an amount, if the
account state is verified and the amount is
less than or equal to the account balance,
then the account balance is decreased by
amount.

Withdraw service withdraws an amount
from the account of ID with PIN in the
bank in the following sequence: First it gets
the balance of the account of ID from the
bank, if the amount is less than or equal to
the balance then it decreases the balance
by Amount, updates the balance of the ac-
count of ID in the bank and then outputs
the new balance.

When a user enters an ID and the user en-
ters a PIN, the account with ID is checked,
if the account verifies PIN, the account
state changes to verified.

created. The method was developed for programmers who suffer from repetitive
strain injuries, and therefore the natural language is very similar to Java and
programming knowledge is a prerequisite.

Attempto controlled English (ACE) [10, 11] is a textual language for writ-
ing functional requirement specifications. It is based on first-order logic with a
rich English syntax. ACE uses declarative sentences that can be combined to
form powerful composite sentences. It also includes some forms of anaphora to
make the language concise and natural. Example sentences in ACE for an ATM
machine, called SimpleMat, are:

The customer enters a card and a numeric personal code that SimpleMat
checks. If the personal code is not valid then SM rejects the card.

ACE is translated into first order logic clauses that are collected to form a
knowledge base. The user can then submit queries to the knowledge base, and
the answers are given in ACE. ACE is used mainly for reasoning on the web and
for querying a knowledge base, and in [11] it has been translated into Prolog.
Still, we believe that with minor modifications ACE could be translated into
LSCs. In fact, NL-play-in can benefit from many features already implemented
in ACE, such as anaphoric reference resolution. We indeed plan to pursue this
line of work. We should add that ACE is tailored for the reasoning domain and
not for reactive system programming.

In [36] a domain specific structured English interface is created for robot
controllers and motion planning. It is template-based and maps directly to linear
temporal logic, supporting safety and liveness properties. The implementation
is through a simple grammar that translates into LTL. Some sample behavior
text from [36] is: ‘Environment starts with false.’, ‘Always not Dummy’, ‘Robot

Programming in Natural Language ? 31

starts in r1 with false’, ‘Activate Beep if and only if you are in r9 or r12 or r17
or r23’, ‘Go to r1’, ‘Go to r3’, etc. Since LSCs can specify safety and liveness
too, we believe that NL-play-in can be applied to the robot controllers domain
with minor adaptations.

7 Future Work

Our work can be extended significantly. The NL tools can be better implemented
as a mature development environment for non-programmers. For example, the
transformation process can be extended to transform NL requirements to LSCs
and back in a round-trip fashion; this will enable friendly project modification
in natural language. Additional capabilities include showing the connection be-
tween different textual requirements and allowing intelligent navigation between
them. Such an extension could be made possible with the aid of navigation and
visualization techniques for viewing multiple LSCs and their inter-connections;
see [29].

Learning algorithms can be applied to extend the source language according
to user preferences. The system could track repetitive errors that a user makes
and accept them as his/her personal way of writing. For example, in our ex-
periments we noticed that many non-native English speakers forget to add the
“the” determinant before object references. They create sentences such as “when
user clicks button”. These repeated errors could be learned and integrated into
a more convenient user-specific grammar.

We can extend the grammar to include behavior “shortcuts” for certain sys-
tematic behaviors, for example using the word toggles for changing between
properties. For example, instead of “when x happens, if the display color is red,
the display color changes to yellow, if the display color is yellow, the display color
changes to red”, we could write “when x happens, toggle display color between
red and yellow. Such shortcuts are valuable when writing the requirements for
large reactive systems in specific domains.

Our language processing tools can be extended to include spell-checking,
anaphoric reference resolution, and additional NLP capabilities [16, 33], allowing
the user to refer to objects previously mentioned in the sentence by, e.g., it.
Similarly to the voice references of “Put-That-There” [2], textual pronouns and
anaphoric references could be resolved. This would allow sentences such as “when
the user clicks the button, its color changes to red”, relaxing the need for explicit
naming, similar to what is done in ACE [10]. Tools from NLP can furthermore
be integrated to resolve aliases or synonyms for methods and properties, using
dictionaries and ontology systems.

We can integrate learning methods to expand our source language according
to new specifications added by the user. This could, in some cases, be used to add
grammar rules dynamically; e.g., when a user wrote a sentence that was not part
of the language and then created the LSC chart directly. Although automatically
extending a grammar from a single bad example is a hard problem, the suggested

32 Gordon and Harel

process is simpler since additional information is available from the final LSC
and the model.

It should be possible to exploit the NL input to enrich the system model
or GUI automatically. For example, if a requirement discusses the click of some
unknown button, a button can be created and added to the GUI. The current
implementation supports automatic construction of a GUI but does so without
considering the nature of objects and methods, providing a uniform rendition of
them all. Creating a ‘smarter’ GUI would require handling the initial layout of
the objects and should provide the user with the ability to edit the automatic
suggestion.

To further liberate programming and grant non-programmers the ability to
program, we would like to add shortcuts and simplifications to NL-play-in. This
includes integrating concepts and ideas from simple and widespread program-
ming languages meant for a larger community. See Scratch [42] for example,
which includes sharing, tinkering, and a web learning platform. Scratch makes
programming easy: users avoid syntax issues since they program by connecting
existing blocks of code while learning mathematical and computational ideas.
Remarkably, the Scratch environment allows combining different stories into a
program [15], similar to in LSCs, and more generally, behavioral programming.
Scratch exposed the world of programming to a large community of children,
and we have hopes that our work will help expose another community of writers
to the programming world.

Future work should extend the way people program with other natural in-
terfaces, such as, speech recognition, which is becoming abundant, and gesture
interfaces with devices like Microsoft’s Kinect. These interfaces, combined with
telling a story in natural language should allow simple creation and modification
of programs in the spirit of show & tell but smarter.

Consider, for example, a smart home system in the future. Advanced in-
terfaces detect the home-owner’s spoken commands in every room and analyze
his/her gestures to find the objects or locations referred to in the commands.
The future smart home should obviously allow the home-owner to boil water,
fill a bath, or turn on the air-conditioning by oral commands. However, a pro-
grammable smart home should also allow the home-owner to modify the smart
home behavior using scenarios/rules that are personally suited for him/her. Be-
havioral programming would work behind the scenes to verify that a connection
exists between the various rules, and that they can indeed operate together. For
example, the home-owner could request that “If the temperature is below 12
degrees Celsius and my car enters the garage, the air-conditioning should start
heating the living room”. Adding references to locations, a user could specify:
“when no one has been in this room for over ten minutes, close this and that”
pointing to the air-conditioning unit and to the living room light, respectively,
referring by “this room” to the room he is standing in.

The potential of our work is in generating scenarios/rules using combinations
of natural language and gestures, and in recognizing inconsistencies between
scenarios and informing the user. For example, if at some point the user requested

Programming in Natural Language ? 33

that “As long as there is no one in the house, the living-room heating should
never be turned on”. This requirement would contradict the first requirement,
and the user should get an indication.

8 Conclusions

Creating complex reactive systems is not a simple task and neither is understand-
ing natural language requirements. We have presented a method that translates
controlled NL requirements into LSCs, with which a reactive system can be both
specified and executed. Moreover, we have expanded the power of this NL in-
terface by combining it with play-in pointing, to yield the hybrid show & tell
method. The implementation of the system is thus a set of fragmented yet struc-
tured requirements — namely the LSCs, that are fully executable.

The ability to translate a controlled natural language into the formal language
of LSCs is a step in the direction of making programming more readily available
in our developing digital world. The translation we suggest is tailored for the
LSC language, but can be extended to support other languages. Some of the
key features include formal rules, fragmented and scenario-based descriptions
in the spirit of behavioral programming, executable and verifiable rule system
with an intelligent natural interface. These idioms come closer to having the
computational tools adapt to human nature than to have humans adapt and
learn computational concepts.

The current situation regarding the execution of LSCs is not without its
limitations. LSCs do not always result in a deterministic execution and the
execution is not always optimal. Nor are LSCs yet scalable to very large systems.
However, progress is being made in the execution methods; see for example, [19,
22, 23, 30, 28]. The work presented here shows how NLP and the LSC formalism,
together with the behavioral programming approach, take programming closer
to how humans specify requirements.

9 Acknowledgments

The research was supported in part by the John von Neumann Minerva Center
for the Development of Reactive Systems at the Weizmann Institute of Science,
and by an Advanced Research Grant to DH from the European Research Council
(ERC) under the European Community’s FP7 Programme.

References

1. A. Begel and S. Graham. Spoken programs. In Proc. of IEEE Symp. on Visual
Languages and Human-Centric Computing, VL/HCC’05, pages 99–106, 2005.

2. R. A. Bolt. “Put-that-there”: Voice and Gesture at the Graphics Interface. SIG-
GRAPH Comput. Graph., 14(3):262–270, July 1980.

3. B. Bryant. Object-Oriented Natural Language Requirements Specification. In
Proc. 23rd Australian Computer Science Conference, ACSC’00, 2000.

34 Gordon and Harel

4. B. R. Bryant and B.-S. Lee. Two-Level Grammar as an Object-Oriented Require-
ments Specification Language. In Proc. 35th Annual Hawaii Int. Conf. on System
Sciences (HICSS’02), page 280, 2002.

5. G. Cabral and A. Sampaio. Formal Specification Generation from Requirement
Documents. Electron. Notes Theor. Comput. Sci., 195:171–188, Jan. 2008.

6. D. Carlson. Eclipse Distilled. Addison-Wesley, 2005.
7. A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. Myers,

and A. Turransky, editors. Watch What I Do: Programming by Demonstration.
MIT Press, 1993.

8. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

9. J. Drazan and V. Mencl. Improved Processing of Textual Use Cases: Deriving
Behavior Specifications. In Proc. 33rd Int. Conf. on Trends in Theory and Practice
of Computer Science, SOFSEM’07, pages 856–868, 2007.

10. N. E. Fuchs and R. Schwitter. Attempto: Controlled natural language for re-
quirements specifications. In Proc. 7th ILPS Workshop on Logic Programming
Environments, 1995.

11. N. E. Fuchs and R. Schwitter. Attempto Controlled English (ACE). In Proc. 1st
Int. Workshop on Controlled Language Applications, pages 124–136, 1996.

12. R. T. Giganto. A Three Level Algorithm for Generating Use Case Specifications. In
Proc. of Software Innovation and Engineering New Zealand Workshop, SIENZ07,
2007.

13. M. Gordon and D. Harel. Show-and-Tell Play-In: Combining Natural Language
with User Interaction for Specifying Behavior. In Proc. IADIS Interfaces and
Human Computer Interaction, IHCI’11, pages 360–364, 2011.

14. M. Gordon and D. Harel. Evaluating a Natural Language Interface for Behavioral
Programming. In Proc. of IEEE Symp. on Visual Languages and Human-Centric
Computing, VL/HCC’12, pages 17–20, 2012.

15. M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the Main Course?
Observations on Naturalness of Scenario-Based Programming. In Proc. 17th
Annual Conf. on Innovation and Technology in Computer Science Education,
ITiCSE’12, pages 198–203, 2012.

16. A. Haghighi and D. Klein. Simple Coreference Resolution with Rich Syntactic and
Semantic Features. In Proc. 2009 Conf. on Empirical Methods in Natural Language
Processing, EMNLP’09, pages 1152–1161, 2009.

17. D. Harel. On Visual Formalisms. Commun. ACM, 31(5):514–530, 1988.
18. D. Harel. From Play-In Scenarios To Code: An Achievable Dream. Computer,

34(1):53–60, 2001.
19. D. Harel. Playing with Verification, Planning and Aspects: Unusual Methods for

Running Scenario-Based Programs. In Proc. 18th Int. Conf. on Computer Aided
Verification, CAD’06, pages 3–4, 2006.

20. D. Harel. Can Programming be Liberated, Period? Computer, 41(1):28–37, 2008.
21. D. Harel and M. Gordon-Kiwkowitz. On Teaching Visual Formalisms. IEEE

Software, 26:87–95, 2009.
22. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral

Requirements. In Proc. 4th Int. Conf. on Formal Methods in Computer-Aided
Design, FMCAD’02, pages 378–398, 2002.

23. D. Harel, H. Kugler, and A. Pnueli. Smart play-out extended: Time and forbidden
elements. In Proc. 4th Int. Conf. on Quality Software, QSIC’04, pages 2–10, 2004.

24. D. Harel and S. Maoz. Assert and Negate Revisited: Modal Semantics for UML
Sequence Diagrams. Software and System Modeling, 7(2):237–252, 2008.

Programming in Natural Language ? 35

25. D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo: Towards a Comprehensive
Tool for Scenario Based Programming. In Proc. 25th Int. Conf. on Automated
Software Engineering, ASE’10, pages 359–360, 2010.

26. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag, 2003.

27. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: the
Play-In/Play-Out Approach. Software and System Modeling, 2(2):82–107, 2003.

28. D. Harel and I. Segall. Planned and Traversable Play-Out: A Flexible Method
for Executing Scenario-Based Programs. In Proc. 13th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’07, pages 485–
499, 2007.

29. D. Harel and I. Segall. Visualizing Inter-Dependencies between Scenarios. In Proc.
4th ACM symp. on Software visualization, SoftVis’08, pages 145–153, 2008.

30. D. Harel and I. Segall. Synthesis from scenario-based specifications. Journal of
Computer and System Sciences, 78(3):970–980, 2012.

31. D. C. Howe. RiTa: Creativity Support for Computational Literature. In Proc. 7th
ACM conf. on Creativity and Cognition, pages 205–210, 2009.

32. ITU: International Telecommunication Union. Recommendation Z.120: Message
Sequence Chart (MSC). Technical report, 1996.

33. D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice-Hall, 2008.

34. M. Kay. Readings in Natural Language Processing. chapter Algorithm Schemata
and Data Structures in Syntactic Processing, pages 35–70. 1986.

35. S.-K. Kim, T. Myers, M.-F. Wendland, and P. A. Lindsay. Execution of Natural
Language Requirements using State Machines Synthesised from Behavior Trees.
Journal of Systems and Software, 85(11):2652–2664, 2012.

36. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating Structured English
to Robot Controllers. Advanced Robotics Special Issue on Selected Papers from
IROS 2007, 22(12):1343–1359, 2008.

37. V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707–710, 1966.

38. S. Maoz, D. Harel, and A. Kleinbort. A Compiler for Multimodal Scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol., 20(4):18, 2011.

39. L. Mich. NL-OOPS: From Natural Language to Object Oriented Requirements
Using the Natural Language Processing System LOLITA. Natural Language En-
gineering, 2(2):161–187, 1996.

40. Microsoft. Microsoft speech api 5.1, http://www.microsoft.com/speech/download/old/sapi5.asp.
41. G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to

WordNet: An On-line Lexical Database. http://wordnet.princeton.edu/, 1993.
42. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-

nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch: Program-
ming for All. Comm. of the ACM, 52(11):60–67, 2009.

43. L. M. Segundo, R. R. Herrera, and K. Y. P. Herrera. UML Sequence Diagram
Generator System from Use Case Description Using Natural Language. Electronics,
Robotics and Automotive Mechanics Conference, 0:360–363, 2007.

44. M. Takahashi, S. Takahashi, and Y. Fujita. A Proposal of Adequate and Efficient
Designing of UML Documents for Beginners. In Proc. Knowledge-Based Intelligent
Information and Engineering Systems, KES’07, pages 1331–1338, 2007.

45. UML. Unified Modeling Language Superstructure, v2.1.1. Technical Report
formal/2007-02-03, Object Management Group, 2007.

36 Gordon and Harel

46. P. W. with NL examples. www.playgo.co. website, 2012.

7 Discussion

7.1 Specifying behavior in natural language

By its nature, the LSC language is closer to the way one would specify dy-

namic requirements in a natural language. This thesis suggests to take ad-

vantage of this similarity, translating natural language requirements directly

into LSCs, thus rendering them fully executable. Accordingly, our transla-

tion into LSCs can be viewed as a method for executing natural language

requirements for reactive systems, or, to put it more succinctly, it enables

programming in natural language.

7.1.1 Requirements engineering

NL has been used previously in computer aided software engineering (CASE)

tools. In [33, 11], NLP supports the design process, and is used to create

class diagrams, or use cases, reducing the errors in the design. Our NL

requirements generate a class and object model, namely the system model,

however the NL method additionally allows executing the requirements. It

can also be used to assist in the development of the model objects and classes.

Our NL algorithm helps create the connections between the existing objects

and new objects when adding new requirements, hence helping in the design

[16].

7.1.2 Related executable langauges

There are additional methods with similar motivation to ours, which trans-

late CNL into more formal executable languages. In [4], use case templates

are translated into process algebra, which is executable. Two-level-grammar

(TLG) [2, 3] translates object-oriented (OO) specifications written in a nat-

ural language style into OO code. Our method uses behavioral programming

ideas to integrate the requirements during execution, requiring less design

87

effort from the writer.

Attempto [9, 10] is a textual language for writing functional requirement

specifications, based on first order logic and a rich English syntax. It uses

declarative sentences, translates into Prolog and is used for reasoning on the

web and for querying databases.

NL specifications have been used in specific domains, e.g., for robot con-

trollers [27].

In general, we may say that these other efforts lack some of the main

benefits of BP, the ability to interweave separate requirements and the ability

to specify not only liveness properties but also forbidden events and safety

requirements.

7.1.3 Preference learning

Our NL play-in can benefit from extending the source language according to

user preferences. The system could track repetitive errors that a user makes

and accept them as his/her personal way of writing. For example, in our

experiments we noticed that many non-native English speakers forget to add

the “the” determinant before object references. Such repeated errors could

be learned and integrated into a more convenient user-specific grammar.

7.1.4 Extending the grammar

The LSC grammar can be extended to include behavior “shortcuts” for cer-

tain systematic behaviors, for example using the word toggles for changing

between properties. Such shortcuts are valuable when writing the require-

ments for large reactive systems in specific domains. Additionally, the gram-

mar can be improved by adding existing methods for reference resolution

and spell-checking. Better use can be made of the dictionary, to connect

synonyms and allow different references for the same object or operation.

Another possibility is to extend the semantics of objects and automatically

88

create a GUI with meaningful common objects; e.g., sliders, buttons, text

boxes, since they may be specified in the text.

7.2 Show & tell

We have described show & tell, an interface that interweaves describing be-

havior textually with demonstrating behavior on a GUI.

7.2.1 Related work

The basic play-in method is similar in some ways to programming by demon-

stration (PBD) [6]. These methods record demonstrations and use them for

repeating tasks, many times generalizing the demonstration. A similar com-

bination of voice and gestures (as opposed to writing and showing) has been

used for managing graphical spaces with “put-that-there” [1]. In that work,

the user uses voice commands to request adding, moving and manipulating

objects on a screen, but can also use the voice pronoun reference of this,

that, here, there, and point a hand to show the referenced objects or lo-

cations. Show & tell integrates text and GUI manipulation to assist in the

creation of system requirements, in a domain generic application, and can

also benefit from references to objects and locations.

7.2.2 Extending the interfaces

In show & tell, the demonstration is performed by pointing at objects or

demonstrating operations on a GUI. However, the ideas can be extended

with tracking hands or gestures using devices like touch screens or Microsoft’s

Kinect. This can make the show part connect to real systems, locations and

gestures.

89

7.2.3 Speech recognition

Although the current implementation of show & tell requires showing and

writing, it can easily be extended by using speech recognition to actually

“tell”. This requires using speech engines with low error rate, which are

becoming feasible in recent years and will probably become more abundant

in the future. We have tested an implementation of NL-play-in using speech

with the Microsoft Speech API (SAPI 5.1) engine [30] and obtained good

results with native English speakers. Since our evaluation found that using

the hands for both typing and showing lessens the user experience, we also

believe show & tell may benefit from seamless transition between speech and

gestures, as is the case when talking and showing.

7.2.4 Show & tell as a general interface

The idea of show & tell has been described here in the context of program-

ming. However, it can also be viewed as a new type of human-computer

interface (HCI). Combining spoken or written language with actions or ges-

tures, controlled by a context-free grammar, can be generalized to many

kinds of interactions; for example: gaming, robot controllers, avionics and

more.

7.3 Evaluation

The user evaluation experiment we describe in [15] is a preliminary one.

Additional evaluation (partly in progress) includes case studies of building

larger systems using NL-play-in, analyzing the learning requirements in order

to work with NL-play-in, and documenting the limitations of the interface.

To further liberate programming and grant non-programmers the ability

to program, future work could add shortcuts and simplifications to NL-play-

in. This includes integrating concepts and ideas from simple and widespread

programming languages meant for a larger community. Consider Scratch,

90

[32] for example, which includes sharing, tinkering, and a web learning plat-

form. Scratch makes programming easy: users avoid syntax issues since they

program by connecting existing blocks of code while learning mathematical

and computational ideas. Remarkably, the Scratch environment allows com-

bining different stories into a program [17], similar to the underlying idea of

LSCs and, more generally, behavioral programming. Scratch exposed a large

community of children to the world of programming and we have hopes that

our work will help expose another community of writers to the programming

world.

7.4 Semantic navigation of LSC

The ideas of semantic navigation of LSCs can be extended to other forms

of visual diagrams, such as class diagrams, activity diagrams, etc. While

modeling tools are developing, and systems are becoming more complex,

tools and methods are necessary to navigate and comprehend the connections

between these elements. Semantic navigation is one of several methods that

can help this process. As large volumes of data become part of software

engineering, in code and models artifacts, methods like semantic navigation

are necessary and should be further developed.

Furthermore, semantic navigation for LSCs, is part of a growing set of

tools for comprehension of behavioral programs [8, 24, 28] . A new emerging

paradigm requires tools that will help different users work with the language,

understand it or modify it, and a lot has yet to be done. From our latest

case studies, it appears that for complex systems, better understanding of

system states is required from the writer. The states, which are hidden in the

BP approach, may need to be exposed in some cases. This may be resolved

by providing different perspectives and views for BP, and specifically for

LSCs. Additionally, a combination of different paradigms may be in order;

for example, combining BP with statecharts [18] or other formalisms.

91

8 Work in Progress

8.1 Auto generation of interaction fragments

One limitation of the current show & tell algorithm is that the possible

edges that an interaction can add are created manually, using knowledge

of the grammar rules. This means that if the grammar is modified, the

possible edges may need to be modified, and furthermore, the interaction

may not provide all the relevant possibilities found in the grammar. Also, to

generalize the ability to connect interaction input with a grammar, we extend

show & tell by generating automatically from the grammar the possible edges

an interaction can create.

The idea is a template-generation algorithm that statically analyzes the

grammar and generates possible template sentences with some of the dynamic

terminals used as interaction placeholders . These IntPs will be filled at run-

time by the user interactions, and templates that have no IntPs can be fed to

the previously described show & tell algorithm for further processing. Such a

generalization may also be useful in a different setting. For example, a smart

phone with a grammar for command and control. If the phone uses a natural

language interface based on a context free grammar, and is endowed with a

way to input additional data through interaction, the template-generation

can help combine the two.

The algorithm requires some definitions that include: interaction input,

interaction output, and interaction filters. The set of interaction input is the

set of terminal symbols generated by the interaction. The set of interaction

output is the set of non-terminal symbols that are considered interesting as

the output of an interaction. The latter also provides a halting condition

for template generation. The algorithm does not generate the infinite set

of sentences the language accepts, but rather small clauses determined by

the output non-terminal set. To demonstrate: in the LSC grammar, the

symbol DET for a determinant (like a or the), is not considered a complete

92

or interesting output by itself and will not be added to the output non-

terminals. Therefore, the generation will not output the non-terminal DET.

However, a MESSAGE is considered an interesting interaction in the domain of

LSC, therefore, the generation will stop when the templates create a MESSAGE;

it will not continue to generate more complex templates of which MESSAGE is

part of.

To get a succinct and relevant set of templates, the search removes seman-

tically identical rules. Moreover, the definitions include the set of interaction

filters; symbols that filter out templates that are too detailed. For example,

in the LSC grammar we support the following kinds of sentences: “the user

must click the button”, “the user may click the button”, and “the user can-

not click the button”. All these, share a common symbol of TEMPERATURE

that can get one of several terminals (must/may/cannot), with different se-

mantic meanings. To filter out such sentences, which will burden the user,

the TEMPERATURE symbol can be added to the interaction filters symbols.

This idea needs to be tested on several grammars to demonstrate how

interaction can be combined naturally with different grammars. We would

like our examples to include systems that work with a command-and-control

grammar using a speech interface and that can be combined with a mouse

our touchscreen interaction.

93

References

[1] R. A. Bolt. ‘Put-That-There”: Voice and Gesture at the Graphics In-

terface. SIGGRAPH Comput. Graph., 14(3):262–270, July 1980.

[2] B. Bryant. Object-Oriented Natural Language Requirements Specifica-

tion. In Proc. 23rd Australian Computer Science Conference, ACSC’00,

2000.

[3] B. R. Bryant and B.-S. Lee. Two-Level Grammar as an Object-Oriented

Requirements Specification Language. In Proc. 35th Annual Hawaii Int.

Conf. on System Sciences, HICSS’02, page 280, 2002.

[4] G. Cabral and A. Sampaio. Formal Specification Generation from Re-

quirement Documents. Electron. Notes Theor. Comput. Sci., 195:171–

188, Jan. 2008.

[5] D. Carlson. Eclipse Distilled. Eclipse series. Addison-Wesley, 2005.

[6] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,

B. A. Myers, and A. Turransky, editors. Watch What I Do: Program-

ming by Demonstration. MIT Press, 1993.

[7] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence

Charts. In Proc. 3rd Int. Conf. on Formal Methods for Open Object-

Based Distributed Systems, FMOODS, page 451, 1999.

[8] N. Eitan, M. Gordon, D. Harel, A. Marron, and G. Weiss. On Visual-

ization and Comprehension of Scenario-Based Programs. In Proc. 19th

IEEE Int. Conf. on Program Comprehension, ICPC’11, pages 189–192,

2011.

[9] N. E. Fuchs and R. Schwitter. Attempto: Controlled natural language

for requirements specifications. In Proc. 7th Intl. Logic Programming

Symp. Workshop Logic Programming Environments, 1995.

94

[10] N. E. Fuchs and R. Schwitter. Attempto Controlled English (ACE).

In Proc. 1st Int. Workshop on Controlled Language Applications, pages

124–136, 1996.

[11] R. T. Giganto. A Three Level Algorithm for Generating Use Case Speci-

fications. In Proc. of Software Innovation and Engineering New Zealand

Workshop 2007, SIENZ07, 2007.

[12] M. Gordon and D. Harel. Generating Executable Scenarios from Natural

Language. In Proc. of the 10th International Conference on Computa-

tional Linguistics and Intelligent Text Processing, CICLing’09, pages

456–467. Springer-Verlag, 2009.

[13] M. Gordon and D. Harel. Semantic Navigation Strategies for Scenario-

Based Programming. In Proc. of the 2010 IEEE Symposium on Visual

Languages and Human-Centric Computing, VLHCC’10, pages 219–226.

IEEE Computer Society, 2010.

[14] M. Gordon and D. Harel. Show-and-Tell Play-In: Combining Natural

Language with User Interaction for Specifying Behavior. In Proc. IADIS

Interfaces and Human Computer Interaction, IHCI’11, pages 360–364,

2011.

[15] M. Gordon and D. Harel. Evaluating a Natural Language Interface for

Behavioral Programming. In Proc. IEEE Symp. on Visual Languages

and Human-Centric Computing, VLHCC’12, pages 167–170, 2012.

[16] M. Gordon and D. Harel. Programming in Natural Language. 2012.

unpublished.

[17] M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the

Main Course? Observations on Naturalness of Scenario-Based Program-

ming. In Proc. of the 17th Annual Conf. on Innovation and Technology

in Computer Science Education, ITICSE’12, 2012. To Appear.

95

[18] D. Harel. Statecharts: A visual formalism for complex systems. Sci.

Comput. Program., 8(3):231–274, 1987.

[19] D. Harel. Can Programming be Liberated, Period? Computer, 41(1):28–

37, 2008.

[20] D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo: Towards a

Comprehensive Tool for Scenario Based Programming. In 25th Int. Conf.

on Automated Software Engineering, ASE’10, pages 359–360, 2010.

[21] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-

ming Using LSC’s and the Play-Engine. Springer-Verlag, 2003.

[22] D. Harel and R. Marelly. Specifying and Executing Behavioral Require-

ments: the Play-In/Play-Out Approach. Software and System Modeling,

2(2):82–107, 2003.

[23] D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Commun.

ACM, 55(7):90–100, 2012.

[24] D. Harel and I. Segall. Visualizing Inter-Dependencies between Scenar-

ios. In Proc. of the 4th ACM symp. on Software visualization, SoftVis

’08, pages 145–153. ACM, 2008.

[25] ITU: International Telecommunication Union. Recommendation Z.120:

Message Sequence Chart (MSC). Technical report, 1996.

[26] D. Jurafsky and J. H. Martin. Speech and Language Processing: An In-

troduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition. Prentice-Hall, 2008.

[27] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating Struc-

tured English to Robot Controllers. Advanced Robotics Special Issue on

Selected Papers from IROS 2007, 22(12):1343–1359, 2008.

96

[28] S. Maoz and D. Harel. On Tracing Reactive Systems. Software and

Systems Modeling (SoSyM), 10(4):447–468, 2011.

[29] S. Markstrum. Staking Claims: A History of Programming Language

Design Claims and Evidence: A Positional Work in Progress. In Eval-

uation and Usability of Programming Languages and Tools, PLATEAU

’10, pages 1–5, 2010.

[30] Microsoft. Microsoft speech api 5.1,

http://www.microsoft.com/speech/download/old/sapi5.asp.

[31] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and

K. Miller. Introduction to WordNet: An On-line Lexical Database.

http://wordnet.princeton.edu/, 1993.

[32] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.

Scratch: Programming for All. Comm. of the ACM, 52(11):60–67, 2009.

[33] M. Takahashi, S. Takahashi, and Y. Fujita. A Proposal of Adequate and

Efficient Designing of UML Documents for Beginners. In Knowledge-

Based Intelligent Information and Engineering Systems, pages 1331–

1338, 2007.

[34] UML. Unified Modeling Language Superstructure, v2.1.1. Technical

Report formal/2007-02-03, Object Management Group, 2007.

97

Statement About Independent Collaboration

I hereby state that the work presented in this thesis was done by me, and

with my supervisor, who was obviously part of the research.

98

List	of	Core	PhD	Papers:	

[GH09] M. Gordon and D. Harel. Generating Executable Scenarios from Natural

Language. In Proc. of the 10th International Conference on

Computational Linguistics and Intelligent Text Processing ,CICLing'09,

pages 456-467, 2009.

[GH 10] M. Gordon and D. Harel. Semantic Navigation Strategies for Scenario-

Based Programming. In Proc. of the 2010 IEEE Symp. on Visual

Languages and Human-Centric Computing, VLHCC '10, pages 219-226,

2010.

[GH 11] M. Gordon and D. Harel. Show-and-Tell Play-In: Combining Natural

Language with User Interaction for Specifying Behavior. In Proc. IADIS

Interfaces and Human Computer Interaction, IHCI’11, pages 360-364,

2011.

[GH 12] M. Gordon and D. Harel. Evaluating a Natural Language Interface for

Behavioral Programming. In Proc. IEEE Symp. On Visual Languages

and Human-Centric Computing, VLHCC’12, pages 167-170, 2012.

List	of	Additional	Papers:	

[HG09] D. Harel and M. Gordon-Kiwkowitz. On Teaching Visual Formalisms.

IEEE Software, 26:87-95, 2009.

[EGHMW11] N. Eitan, M. Gordon, D. Harel, A. Marron, and G. Weiss. On

visualization and comprehension of scenario-based programs. In Proc.

19th IEEE Int. Conf, on Program Comprehension, ICPC ‘11, pages 189-

192, 2011.

[GMM12] M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the Main

Course? Observations on Naturalness of Scenario-Based Programming.

In Proc. of the 17th Annual Conf. on Innovation and Technology in

Computer Science Education, ITICSE’12, 2012.

[AAGH] G. Alexandron, M. Armony, M. Gordon, and D. Harel. The Effect of

Previous Programming Experience on the Learning of Scenario-Based

Programming. In Proc. 12th Koli Int. Conf. on Computing Education

Research, 2012.

 תמצית

 live sequence -, ובמיוחד לשפת התרחישים-ים חכמים לתכנות מבוססתזה זו מתארת ממשק

charts, או בקיצורLSC. הנושא העיקרי מתאר את ממשק הNL-play-in הכנסת דרישות בשפה ,

 כתיבה של דרישות בשפה טבעית מובנית.ע"י LSCs, שיטה שמאפשרת יצירה של טבעית

 הקשר- ע"י שימוש בדקדוק חסר LSCsשל החזותיהשיטה ממירה טקסט לפורמליזם

נושא שני הנכלל בתזה .יומשמעות בכוונות-שמשת להבהרת רבואינטראקציה עם הכותב, המ

שילוב של הכנסת דרישות בשפה טבעית עם אינטראקציה של , תאר והדגם, show & tellהוא

 -שיטת ה הרחבה שלהמערכת המתוארת. זו) שלGUIממשק משתמש גרפי (המשתמש עם

play-in.

תאר .נתת משמש לביצוע בפועל של תכנות התנהגותישל המערכת המתוכ play-in ,GUIב

בטקסט ת לתאר התנהגות את היכולת הנ"ל עם היכולבצורה טבעית ואינטואיטיבית ממזגוהדגם

 הוא מפענח את האינטראקציה של הכותב בהקשר של הדרישות הכתובות.בשפה טבעית.

, ושיטות נוספות שפותחו לתכנות של הממשקים ראשוניות הערכותגם לבסוף, אנו מציגים

שיטות אלא כוללות רעיונות לניווט תכנות התנהגותי. בתה, הנקראתולהרח, םתרחישי-מבוסס

 תסריטים.- מבוססות תוכנותוהבנה של

, םתרחישי-לתכנת באמצעות תכנות מבוסס טבעיות יותר דרכיםביצירת תזה זו, עוסקת ככלל

 .לציבור רחב יותרנגיש האמתיתכנות בעולם להפוךבמטרה

